2.cho tam giác ABC có AC=10cm,góc B =45 độ,góc C=30 độ .kẻ phân giác AD.tính AB,BC và AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\widehat{BAC}=180^o-\widehat{B}-\widehat{C}=180^o-60^o-30^o=90^o\)
\(\widehat{ADH}=90^o-\widehat{DAH}=90^o-\left(\widehat{DAB}-\widehat{HAB}\right)=90^o-\left(45^o-30^o\right)=75^o\)
\(\widehat{HAD}=\widehat{DAB}-\widehat{HAB}=45^o-30^o=15^o\)
b) Xét tam giác \(EAD\)vuông tại \(E\)có \(\widehat{EAD}=\frac{1}{2}\widehat{BAC}=45^o\)nên tam giác \(EAD\)vuông cân tại \(E\).
Do đó phân giác \(EK\)của tam giác \(EAD\)cũng đồng thời là đường cao
suy ra \(EK\)vuông góc với \(AD\).
bạn ơi thế \(\widehat{HAB}\) tìm kiểu gì ạ vì góc đó chưa có số đo ạ :|
a ) Ta có : AB < AC < BC ( 6 < 8 < 10 )
=> \(\widehat{C}< \widehat{B}< \widehat{A}\)( quan hệ giữa góc và cạnh đối diện )
b ) \(\Delta ABC\)có : AB2 + AC2 = 62 + 82 = 100
BC2 = 102 = 100
=> AB2 + AC2 = BC2
Theo đ/l Py-ta-go => Tam giác ABC là tam giác vuông
c ) DH \(\perp\)BC => Tam giác BHD vuông
Xét 2 tam giác vuông : \(\Delta BHD\)và \(\Delta BAD\)có :
BD là cạnh chung
\(\widehat{ABD}=\widehat{HBD}\)( do BD là tia p/g của góc B )
=> Tam giác BHD = tam giác BAD
=> \(\widehat{BDA}=\widehat{BDH}\)
=> DB là tia p/g của góc ADN
d ) tự làm
A B C D H M
Giải: a) Ta có: AB < AC < BC(6cm < 8cm< 10cm)
=> \(\widehat{C}< \widehat{B}< \widehat{A}\) (quan hệ giữa cạnh và góc đối diện)
b) Ta có: AB2 + AC2 = 62 + 82 = 36 + 64 = 100
BC2 = 102 = 100
=> AB2 + AC2 = BC2
=> t/giác ABC là t/giác vuông (theo định lí Pi - ta - go đảo)
c) Xét t/giác ABD và t/giác HBD
có: \(\widehat{A}=\widehat{BHD}=90^0\)
BD : chung
\(\widehat{ABD}=\widehat{HBD}\)(gt)
=> t/giác ABD = t/giác HBD (ch - gn)
=>\(\widehat{ADB}=\widehat{HDB}\) (2 góc t/ứng)
=> DB là tia p/giác của góc ADH
d) Xét t/giác ADM và t/giác HDC
có: \(\widehat{MAD}=\widehat{DHC}=90^0\)
AD = HD (vì t/giác ABD = t/giác HBD)
\(\widehat{ADM}=\widehat{HDC}\) (đối đỉnh)
=> t/giác ADM = t/giác HDC (g.c.g)
=> AM= HC (2 cạnh t/ứng)
Mà AB + AM = BM
BH + HC = BC
và AB = BH (vì t/giác ABD = t/giác HBD) ; AM = HC (cmt)
=> BM = BC => t/giác AMC cân tại B
=> \(\widehat{M}=\widehat{C}=\frac{180^0-\widehat{B}}{2}\) (1)
Ta có: AB = HB (vì t/giác ABD = t/giác HBD)
=> t/giác ABH cân tại B
=> \(\widehat{BAH}=\widehat{BHA}=\frac{180^0-\widehat{B}}{2}\) (2)
Từ (1) và (2) => \(\widehat{M}=\widehat{BAH}\)
Mà 2 góc này ở vị trí đồng vị
=> CM // AH
A B C 6 10 D H K
a, Xét \(\Delta ABC\)VUÔNG tại A
Áp dụng định lý pitago ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AB^2=BC^2-AC^2\)
\(\Rightarrow AB^2=10^2-6^2\)
\(\Rightarrow AB^2=100-36\)
\(\Rightarrow AB^2=64\)
\(\Rightarrow AB=\sqrt{64}=8\)
VẬY AB=8 cm
b, Xét \(\Delta ABD\)và \(\Delta HBD\)CÓ:
\(\widehat{BAD}=\widehat{BHD}=90độ\)
\(\widehat{ABD}=\widehat{HBD}\)(do BD là tia phân giác của \(\widehat{B}\))
BD là cạnh chung
\(\Rightarrow\Delta ABD=\Delta HBD\)(ch-gn)
\(\Rightarrow AD=HD\)(2 CẠNH TƯƠNG ỨNG)
c,Do \(\Delta ABD=\Delta HBD\left(câub\right)\)
\(\Rightarrow\widehat{BDA}=\widehat{BDH}\)(2 góc tương ứng)
lại có \(\widehat{ADK}=\widehat{HDC}\)(đối đỉnh)
\(\Rightarrow\widehat{BDA}+\widehat{ADK}=\widehat{BDH}+\widehat{HDC}\)
\(\Rightarrow\widehat{BDK}=\widehat{BDC}\)
Xét \(\Delta KBD\) VÀ \(\Delta CBD\)CÓ:
\(\widehat{ABD}=\widehat{CBD}\)(Do BD là tia phân giác của \(\widehat{B}\))
BD là cạnh chung
\(\widehat{BDK}=\widehat{BDC}\left(cmt\right)\)
Do đó \(\Delta KBD=\Delta CBD\left(g-c-g\right)\)
\(\Rightarrow BK=BC\)(2 CẠNH TƯƠNG ỨNG)
\(\Rightarrow\Delta KBC\) cân tại B
a: ΔABC cân tại A có AH là phân giác
nên H là trung điểm của BC
ΔABC cân tại A có AH là trung tuyến
nên AH vuông góc BC
b: BH=CH=12/2=6cm
AH=căn AB^2-AH^2=8cm
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
=>ΔADH=ΔAEH
=>AD=AE và HD=HE
=>ΔHDE cân tại H
d: Xét ΔABC có AD/AB=AE/AC
nên DE//BC