\(\frac{1}{2}\times\frac{2}{3}+\frac{1}{3}\times\frac{3}{4}+\frac{1}{4}\times5=?\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1^2}{1\times2}\times\frac{2^2}{2\times3}\times\frac{3^2}{3\times4}\times\frac{4^2}{4\times5}\)
\(=\frac{1}{2}\times\frac{4}{6}\times\frac{9}{12}\times\frac{16}{20}\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}\)
Gạch các số giống nhau của phép nhân đó là 2; 3; 4. Ta được kết quả bằng
\(=\frac{1}{5}\)
(1+\(\frac{1}{3}\)) x (1+\(\frac{1}{2x4}\)) x(1+\(\frac{1}{3x5}\))x(1+\(\frac{1}{4x6}\)) x .....x (1+ \(\frac{1}{2009x2011}\))
= \(\frac{2}{1x3}\)x \(\frac{2}{2x4}\)x \(\frac{2}{3x5}\)x \(\frac{2}{4x6}\)x....x \(\frac{2}{2009x2011}\)
= ..................
đến đây tự làm nhé
\(\frac{1.2.6.4.6.4.5.2}{2.3.6.8.6.2.2.2.8.10}=\frac{1}{96}\)
\(\frac{59}{10}:\frac{3}{2}-\left(\frac{7}{3}\cdot\frac{17}{4}-28\cdot\frac{4}{3}\right):\frac{7}{4}\)
\(=\frac{59}{15}-\frac{29}{4}:\frac{7}{4}=\)\(\frac{59}{15}-\frac{29}{7}=\frac{-22}{105}\)
B = \(\frac{59}{10}:\frac{3}{2}-\left(\frac{7}{3}x\frac{17}{4}-2x\frac{4}{3}\right):\frac{7}{4}\)
= \(\frac{59}{10}x\frac{2}{3}-\left(\frac{119}{12}-\frac{8}{3}\right)x\frac{4}{7}\)
= \(\frac{59}{15}-\frac{29}{4}x\frac{4}{7}=\frac{59}{15}-\frac{29}{7}\)
= \(\frac{-22}{105}\)
C = \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+\frac{1}{5x6}+\frac{1}{6x7}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{6}-\frac{1}{7}\)
= \(1-\frac{1}{7}=\frac{6}{7}\)
\(d=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right).........\left(1+\frac{1}{99.101}\right)\)
\(=\frac{4}{3}.\frac{9}{2.4}.............\frac{10000}{99.101}\)
\(=\frac{2.2}{3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}............\frac{100.100}{99.101}\)
\(=\frac{2.3.4..........100}{2.3.4............99}.\frac{2.3.4...........100}{3.4...........101}\)
\(=100.\frac{2}{101}\)\(=\frac{200}{101}\)
\(C=\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times...\times\left(1-\frac{1}{1994}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{1993}{1994}\)
\(=\frac{1\times2\times3\times...\times1993}{2\times3\times4\times...\times1994}\)
\(=\frac{1}{1994}\) (Giản ước còn lại như này)
(3/429 - 1/1.3)(3/429 - 1/3.5) ... (3/429 - 1/121.123)
= (1/143 - 1/1.3)(1/143 - 1/3.5) ... (1/143 - 1/11.13) ... (1/143 - 1/121.123)
= (1/11.13 - 1/1.3)(1/11.13 - 1/3.5) ... (1/11.13 -1/11.13) ... (1/11.13 - 1/121.123)
= (1/11.13 - 1/1.3)(1/11.13 - 1/3.5) ... 0 ... (1/11.13 - 1/121.123)
= 0
Bài làm :
a)\(=-\frac{3}{5}+\frac{28}{5}\times\frac{9}{14}=-\frac{3}{5}+\frac{18}{5}=3\)
b)\(=\frac{55}{126}+\frac{5}{42}+\frac{4}{9}=1\)
c)\(=-\frac{51}{13}-\frac{27}{13}=-6\)
d)\(=\frac{7}{3}-11\frac{1}{4}\times\frac{2}{15}=\frac{7}{3}-\frac{3}{2}=\frac{5}{6}\)
e)\(=1\times\frac{8}{3}\times0,25=\frac{2}{3}\)
\(\frac{1}{2}\times3+\frac{1}{3}\times4+\frac{1}{4}\times5=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}=\frac{18}{12}+\frac{16}{12}+\frac{15}{12}=\frac{18+16+15}{12}=\frac{49}{12}=4\frac{1}{12}\)
\(=\frac{1}{3}+\frac{1}{4}+\frac{5}{4}=\frac{11}{6}\)