K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2021

Với \(n>0;n\in N:\dfrac{1}{n\sqrt{n+4}+\left(n+4\right)\sqrt{n}}=\dfrac{1}{\sqrt{n\left(n+4\right)}\left(\sqrt{n}+\sqrt{n+4}\right)}=\dfrac{\sqrt{n+4}-\sqrt{n}}{\sqrt{n\left(n+4\right)}\left(n+4-n\right)}=\dfrac{1}{4}\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+4}}\right)\) (1)

Áp dụng (1) ta được:

 \(\dfrac{1}{1\sqrt{5}+5\sqrt{1}}+\dfrac{1}{5\sqrt{9}+9\sqrt{5}}+...+\dfrac{1}{2013\sqrt{2017}+2017\sqrt{2013}}\)

\(=\dfrac{1}{4}\left(1-\dfrac{1}{\sqrt{5}}+\dfrac{1}{\sqrt{5}}-\dfrac{1}{\sqrt{9}}+...+\dfrac{1}{\sqrt{2013}}-\dfrac{1}{\sqrt{2017}}\right)\)

\(=\dfrac{1}{4}\left(1-\dfrac{1}{\sqrt{2017}}\right)=\dfrac{\sqrt{2017}-1}{4\sqrt{2017}}=\dfrac{2017-\sqrt{2017}}{8068}\)

Ý A

30 tháng 6 2021

em cảm ơn ạ

 

29 tháng 12 2021

Câu 5: 

\(\Leftrightarrow-x^2+7x-9+2x-9=0\)

\(\Leftrightarrow x^2-9x+18=0\)

=>x=3

=>Chọn A

10 tháng 3 2022

câu 27 cái đầu là on  cái sau là in

28B

10 tháng 3 2022

Còn lại mình làm đúng ko bạn

29 tháng 12 2021

Câu 2: C

29 tháng 12 2021

CÁCH LÀM SAO Ạ.

1 tháng 5 2022

Ta có : \(f\left(2\right)=2a+b-6\)

\(\lim\limits_{x\rightarrow2^+}\dfrac{x-\sqrt{x+2}}{x^2-4}=\lim\limits_{x\rightarrow2^+}\dfrac{x^2-x-2}{\left(x-2\right)\left(x+2\right)\left(x+\sqrt{x+2}\right)}\)  

\(=\lim\limits_{x\rightarrow2^+}\dfrac{x+1}{\left(x+2\right)\left(x+\sqrt{x+2}\right)}=\dfrac{3}{16}\)

\(\lim\limits_{x\rightarrow2^-}x^2+ax+3b=4+2a+3b\) 

H/s liên tục tại điểm x = 2 \(\Leftrightarrow\dfrac{3}{16}=2a+3b+4=2a+b-6\)

Suy ra : \(a=\dfrac{179}{32};b=-5\) => t = a + b = 19/32 . Chọn C 

NV
29 tháng 3 2022

\(f\left(x\right)=x^5+x^3\Rightarrow f'\left(x\right)=5x^4+3x^2\)

\(f'\left(2\right)=5.2^4+3.2^2=92\)

29 tháng 3 2022

\(f\left(x\right)=x^5+x^3\)

=>\(f'\left(x\right)=5x^4+3x^2\)

=>\(f'\left(2\right)=5.2^4+3.2^2\)

\(f'\left(2\right)=5.16+3.4=92\)

NV
14 tháng 4 2022

21.

Giới hạn đã cho hữu hạn khi và chỉ khi \(a=1\)

Khi đó:

\(\lim\limits_{x\rightarrow+\infty}\left(x-\sqrt{x^2+bx+2}\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2-\left(x^2+bx+2\right)}{x+\sqrt{x^2+bx+2}}=\lim\limits_{x\rightarrow+\infty}\dfrac{-bx-2}{x+\sqrt{x^2+bx+2}}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{-b-\dfrac{2}{x}}{1+\sqrt{1+\dfrac{b}{x}+\dfrac{2}{x^2}}}=\dfrac{-b}{2}\)

\(\Rightarrow-\dfrac{b}{2}=4\Rightarrow b=-8\)

\(\Rightarrow a+b=1-8=-7\)

22.

B sai, do các cạnh bên của chóp đều tạo với đáy các góc bằng nhau

25 tháng 10 2023

a: ΔABC vuông tại A

mà AM là trung tuyến

nên MA=MB=MC=BC/2

Xét ΔMAB có MA=MB và \(\widehat{MBA}=60^0\)

nên ΔMAB đều

b: ΔBAM đều

mà BH là đường cao

nên H là trung điểm của AM

Xét ΔHNM vuông tại H và ΔHBA vuông tại H có

HM=HA

\(\widehat{HMN}=\widehat{HAB}\)(MN//AB)

Do đó: ΔHNM=ΔHBA

=>HN=HB

=>H là trung điểm của BN

Xét tứ giác ABMN có

H là trung điểm chung của AM và BN

BM=BA

Do đó: ABMN là hình thoi

c: ABMN là hình thoi

=>\(\widehat{NMB}=180^0-\widehat{MBA}=180^0-60^0=120^0\)

Xét ΔMNB có \(cosNMB=\dfrac{MN^2+MB^2-BN^2}{2\cdot MN\cdot MB}\)

\(\Leftrightarrow\dfrac{AB^2+AB^2-BN^2}{2\cdot AB\cdot AB}=-\dfrac{1}{2}\)

=>\(2AB^2-BN^2=-AB^2\)

=>\(BN^2=3AB^2\)

Xét ΔMAC có \(cosAMC=\dfrac{MA^2+MC^2-AC^2}{2\cdot MA\cdot MC}\)

=>\(\dfrac{AB^2+AB^2-AC^2}{2\cdot AB\cdot AB}=cos120=\dfrac{-1}{2}\)

=>\(2AB^2-AC^2=-AB^2\)

=>\(AC^2=3AB^2\)

=>\(AC^2=BN^2\)

=>AC=BN

26 tháng 2 2022

\(a.\dfrac{12}{3}=\dfrac{20}{5}=4\\ b.\dfrac{9}{-3}=\dfrac{-15}{5}=-3\)

26 tháng 2 2022

a, Xét \(\dfrac{x}{3}=4\Rightarrow x=12;\dfrac{20}{y}=4\Rightarrow y=\dfrac{20}{4}=5\)

b, \(\dfrac{9}{-x}=-3\Rightarrow-x=-3\Leftrightarrow x=3\)

\(\dfrac{y}{5}=-3\Rightarrow y=-15\)