phân tích đa thức thành nhân tử:
2x2+5xy+y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2+xy-y^2=\left(x^2-xy\right)+\left(x^2-y^2\right)=x\left(x-y\right)+\left(x-y\right)\left(x+y\right)=\left(x-y\right)\left[x+\left(x-y\right)\right]=\left(x-y\right)\left(x+x-y\right)=\left(x-y\right)\left(2x+y\right)\)
Lời giải:
$(2x^2-y^2)+xy-(2x-y)=(2x^2+xy-y^2)-(2x-y)$
$=[(2x^2-xy)+(2xy-y^2)]-(2x-y)=[x(2x-y)+y(2x-y)]-(2x-y)$
$=(2x-y)(x+y)-(2x-y)=(2x-y)(x+y-1)$
a) 2x2- 6x2
= -4x2
b) x2-6x+9-y2
= (x-3)2 -y2
= (x-3-y).(x-3+y)
a: Ta có: \(x^2-xy-3x+3y\)
\(=x\left(x-y\right)-3\left(x-y\right)\)
\(=\left(x-y\right)\left(x-3\right)\)
b: Ta có: \(5x^2+5xy-x-y\)
\(=5x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(5x-1\right)\)
c: Ta có: \(x^2-2xy+y^2-z^2\)
\(=\left(x-y\right)^2-z^2\)
\(=\left(x-y-z\right)\left(x-y+z\right)\)
\(a,x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right).\left(x-y+z\right)\)
\(b,x^3+y^3+2x^2-2xy+2y^2=\left(x^3+y^3\right)+2\left(x^2-xy+y^2\right)=\left(x+y\right).\left(x^2-2xy+y^2\right)+2.\left(x^2-xy+y^2\right)=\left(x^2-xy+y^2\right).\left(x+y+2\right)\)
\(4x^2-5xy+y^2=\left(4x^2-5xy+\dfrac{25}{16}y^2\right)-\dfrac{9}{16}y^2=\left(2x-\dfrac{5}{4}y\right)^2-\dfrac{9}{16}y^2=\left(2x-\dfrac{5}{4}y-\dfrac{3}{4}y\right)\left(2x-\dfrac{5}{4}y+\dfrac{3}{4}y\right)=\left(2x-2y\right)\left(2x-\dfrac{1}{2}y\right)=\left(x-y\right)\left(4x-y\right)\)
\(4x^2-5xy+y^2\)
\(=4x^2-4xy-xy+y^2\)
\(=4x\left(x-y\right)-y\left(x-y\right)\)
\(=\left(x-y\right)\left(4x-y\right)\)
a, \(x^2\) + 4\(x\) - y2 + 4
= (\(x^2\) + 4\(x\) + 4) - y2
= (\(x\) + 2)2 - y2
= (\(x\) + 2 - y)(\(x\) + 2 + y)
b, 2\(x^2\) - 18
= 2.(\(x^2\) -9)
= 2.(\(x\) -3).(\(x\) + 3)
Lời giải:
$2x^2+y^2-2xy+2x-4y+9$
$=(x^2+y^2-2xy)+4(x-y)+(x^2-2x+1)+8$
$=(x-y)^2+4(x-y)+4+(x-1)^2+4$
$=(x-y+2)^2+(x-1)^2+4$
Này chỉ tính được min thôi chứ không phân tích được thành nhân tử bạn nhé.
\(2x^2+5xy+y^2=2\left(x^2+\frac{5}{2}xy+\frac{y^2}{2}\right)=2\left(x^2+\frac{2.x.5}{4}y+\frac{25}{4}y^2-\frac{23}{4}y^2\right)=2\left[\left(x+\frac{5}{2}\right)^2-\frac{23}{4}y^2\right]\)