Tìm các số hữu tỷ \(x,y>0\)sao cho \(x+\frac{1}{y},y+\frac{1}{x}\inℤ\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/x+1/y+1/z =0 nhé
\(\sqrt{x^2+y^2+z^2}=\sqrt{\left(x+y+z\right)^2-2\left(xy+yz+xz\right)}=\sqrt{\left(x+y+z\right)^2-2xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}=\sqrt{\left(x+y+z\right)^2}=\left|x+y+z\right|\)
ta có : 1/y = x/4 - 1/2 = ( x+2)/4 <=> y = 4/(x - 2)
Để x, y nguyên nên ta có : x-2 ϵ Ư(4) = { -1 , 1 ,-2,2-4,4}
x-2=1=>x=3=>y=4
x-2=-1=>x=1=>y=-4
x-2=-2=>x=0=>y=0
x-2=2=>x=4=>y=2
x-2=-4=>x=-2=>y=-1
x-2=4=>x=6=>y=1
vay cac cap so nguyen( x,y) la :(3,4),(1,-4),(0,0),(4,2),(-2,-1),(6,1)
x4
12
1
Đặt a = x + 1 > 0 ; b = y + 1 > 0 ; c = z + 4 > 0
a + b + c = 6
\(A=\frac{a-1}{a}+\frac{b-1}{b}+\frac{c-4}{c}=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\)
Theo Bất Đẳng Thức ta có: \(\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{4}{c}\ge\frac{4}{a+b}+\frac{4}{c}\ge\frac{16}{a+b+c}=\frac{8}{3}\)
\(\Rightarrow A\le\frac{1}{3}\)Đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}a=b\\a+b=c\\a+b+c=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=\frac{3}{2}\\c=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=-1\end{cases}}}\)
Vậy MaxA = 1/3 khi \(\hept{\begin{cases}x=y=\frac{1}{2}\\z=-1\end{cases}}\)
Bài 2 :
Ta có : x - y = xy => x = xy + y = y ( x + 1 )
=> x : y = x + 1 ( vì y khác 0 )
Ta có : x : y = x - y => x + 1 = x - y => y = -1
Thay y = -1 vào x - y = xy , ta được x - (-1) = x (-1) => 2x = -1 => x = -1/2
Vậy x = -1/2 ; y = -1
\(Q=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\le3-\frac{16}{x+y+z+6}=\frac{1}{3}\)
dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\frac{1}{2};\frac{1}{2};-1\right)\)
Ta có \(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
\(\frac{5}{x}=\frac{1-2y}{8}\)
\(\Rightarrow\)5.8=x(1-2y)
\(\Rightarrow\)40 =x(1-2y)
Lại có :40=1.40= \(-1.\left(-40\right)=2.20=-2.\left(-20\right)=4.10\)\(=-4.\left(-10\right)=5.8=-5.\left(-8\right)\)
Mà 1-2y là số lẻ nên (1-2y)\(\in\)ước lẻ của 40
Ta có bảng sau
x | 1-2y | y |
40 | 1 | 0 |
-40 | -1 | 1 |
8 | 5 | -2 |
-8 | -5 | 3 |
nhé!
Đặt \(x=\frac{a}{b},y=\frac{c}{d}\)với \(a,b,c,d\inℤ^+;b,d\ne0;\left(a,b\right)=1;\left(c,d\right)=1\).
Ta có: \(x+\frac{1}{y}=\frac{a}{b}+\frac{d}{c}=\frac{ac+bd}{bc}\inℤ\)
\(\Rightarrow\hept{\begin{cases}ac+bd⋮b\\ac+bd⋮c\end{cases}}\Leftrightarrow\hept{\begin{cases}c⋮b\\b⋮c\end{cases}}\Leftrightarrow b=c\)(vì \(\left(a,b\right)=1,\left(c,d\right)=1\))
Tương tự ta cũng có \(a=d\).
Khi đó \(x=\frac{a}{b}=\frac{d}{c}=\frac{1}{y}\).
Bài toán ban đầu trở thành: tìm số hữu tỉ \(x>0\)để \(2x\inℤ,\frac{2}{x}\inℤ\).
\(2x\inℤ^+\Leftrightarrow x=\frac{a}{2}\)với \(a\inℤ^+\)
\(\frac{2}{x}=\frac{2}{\frac{a}{2}}=\frac{4}{a}\inℤ^+\)mà \(a\inℤ^+\)nên \(a\inƯ\left(4\right)=\left\{1;2;4\right\}\).
Từ đây bạn tìm ra được giá trị của \(x\)và \(y\).