Tính nhanh \(\frac{1}{2}\)+ \(\frac{1}{4}\)+ \(\frac{1}{8}\)+ ..... + \(\frac{1}{256}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A\cdot2=\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}...+\frac{1}{256}\right)\cdot2\)
\(=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}...+\frac{1}{128}\)
\(A\cdot2-A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}...+\frac{1}{128}-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\right)\)
\(A=1-\frac{1}{256}=\frac{255}{256}\)
\(A=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\)
\(2A=1+\frac{1}{2}+...+\frac{1}{2^7}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^7}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\right)\)
\(A=1-\frac{1}{2^8}\)
\(A=\frac{2^8-1}{2^8}\)
\(A=\frac{255}{256}\)
\(A=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+....+\frac{1}{256}-\frac{1}{512}\)
\(=\frac{1}{2}-\frac{1}{512}\)
\(=\frac{255}{512}\)
Vậy \(A=\frac{255}{512}\)
A=14 +18 +116 +132 +164 +1128 +1256 +1512
=12 −14 +14 −18 +....+1256 −1512
=12 −1512
=255512
Vậy A=255512
Phạm Long Khánh
\(2A=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
\(2A=1+\frac{1}{2}+...+\frac{1}{2^9}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
\(A=1-\frac{1}{2^{10}}=\frac{2^{10}-1}{2^{10}}=\frac{1023}{1024}\)
BẤM ĐÚNG NHÉ
Đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
\(2A=2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\right)\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2}+.......+\frac{1}{64}+\frac{1}{128}\right)-\left(\frac{1}{2}+\frac{1}{4}+......+\frac{1}{128}+\frac{1}{256}\right)\)
\(\Rightarrow A=1-\frac{1}{256}\)
\(\Rightarrow A=\frac{255}{256}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
\(=\frac{128}{256}+\frac{64}{256}+\frac{32}{256}+\frac{16}{256}+\frac{8}{256}+\frac{4}{256}+\frac{2}{256}+\frac{1}{256}\)
\(=\frac{\left(128+2\right)+\left(64+16\right)+\left(32+8\right)+\left(4+1\right)}{256}\)
\(=\frac{130+80+40+5}{256}\)
\(=\frac{255}{256}\)
Theo đề bài ta có :
\(2B=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{128}\)
\(\Leftrightarrow2B-B=\left(1+\frac{1}{2}+...+\frac{1}{128}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\right)\)
\(\Leftrightarrow B=1-\frac{1}{256}\)
\(\Leftrightarrow B=\frac{255}{256}\)
\(B=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+..+\frac{1}{256}\)
\(\Rightarrow B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^8}\)
\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{2^2}+..+\frac{1}{2^7}\)
\(\Rightarrow2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\right)\)
\(\Rightarrow B=1-\frac{1}{2^8}\)
tính bằng cách thuận tiện : \(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}...+\frac{1}{128}+\frac{1}{256}\)
Dễ lắm bạn à :
Đặt \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{128}+\frac{1}{256}\)
\(\Rightarrow2A=2\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{128}+\frac{1}{256}\right)\)
\(\Leftrightarrow2A=2+1+\frac{1}{2}+\frac{1}{4}+....+\frac{1}{64}+\frac{1}{128}\)
\(\Leftrightarrow2A-A=2+1+\frac{1}{2}+\frac{1}{4}+....+\frac{1}{64}+\frac{1}{128}-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{128}+\frac{1}{256}\right)\)
\(\Leftrightarrow A=2-\frac{1}{256}=\frac{511}{256}\)
đặt A= 1+1/2+1/4+1/8+...+1/128+1/256
2A=2+1+1/2+1/4+...+1/64+1/128
2A-A=A=2-1/256=511/256
Đặt A = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512
2A = 1/2 x 2 + 1/4 x 2 + 1/8 x 2 + 1/16 x 2 + 1/32 x 2 + 1/64 x 2 + 1/128 x 2 + 1/256 x 2 + 1/512 x 2
2A = 1 + 1/2 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
2A - A = ( 1 + 1/2 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 ) - ( 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512 )
A = 1 - 1/512
A = 511/512
Sửa lại là 1/256 nha
\(=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+...+\left(\frac{1}{128}-\frac{1}{256}\right)\)
\(=1-\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{4}-\frac{1}{4}\right)-\left(\frac{1}{8}-\frac{1}{8}\right)-...-\left(\frac{1}{128}-\frac{1}{128}\right)-\frac{1}{256}\)
\(=1-\frac{1}{256}=\frac{255}{256}\)
\(=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+...+\left(\frac{1}{128}-\frac{1}{256}\right)\)
\(=1-\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{4}-\frac{1}{4}\right)-\left(\frac{1}{8}-\frac{1}{8}\right)-...-\left(\frac{1}{128}-\frac{1}{128}\right)-\frac{1}{256}\)
\(=1-\frac{1}{256}=\frac{255}{256}\)