K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(b=\left(n^2-n\right)\left(n+1\right)\)

\(=\left(n\cdot n-n\cdot1\right)\left(n+1\right)\)

\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)\)

Vì n-1;n;n+1 là ba số nguyên liên tiếp

nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮3!\)

=>b chia hết cho 6

\(c=5n^2+5n\)

\(=5n\cdot n+5n\cdot1\)

\(=5n\left(n+1\right)\)

n;n+1 là hai số nguyên liên tiếp

=>\(n\left(n+1\right)⋮2\)

=>\(c=5\cdot n\cdot\left(n+1\right)⋮5\cdot2=10\)

29 tháng 4 2019

1. Cho số nguyên x là 9 (Thỏa mãn x:7, dư 2); 2x+3(giả thuyết)

=> (2.9)+3 = 21 chia hết cho7 (chia hết cho viết bằng ki hiệu nha bạn)

2. 2^0+2^1+2^2+2^3+...+2^5n-3+2^5n-2+2^5-1

= (2^0+2^1+2^2+2^3+2^4)+...+(2^5n-5+2^5n-4+2^5n-3+2^5n-2+2^5n-1)

=(1+2+4+8+16)+...+(2^5n-5+2^5n-4+2^5n-3+2^5n-2+2^5n-1) chia hết cho 31

26 tháng 10 2023

\(3^{5n+2}+3^{5n+1}-3^{5n}=3^{5n}\left(3^2+3-1\right)=11.3^{5n}⋮11\)

26 tháng 10 2023

\(3^{5n+2}+3^{5n+1}-3^{5n}(n\in N^*)\\=3^{5n}\cdot3^2+3^{5n}\cdot3-3^{5n}\\=3^{5n}\cdot(3^2+3-1)\\=3^{5n}\cdot11\)

Vì \(3^{5n}\cdot11\vdots11\) 

nên biểu thức \(3^{5n+2}+3^{5n+1}-3^{5n}\vdots11\)

30 tháng 5 2019

Chọn B.

Ta có:

13 tháng 11 2021

A=2+22+23+...+299+2100A=2+22+23+...+299+2100

⇒2A=22+23+24+...+2100+2101⇒2A=22+23+24+...+2100+2101

⇒A=2101−2⇒A=2101−2

B=3+32+33+...+399+3100B=3+32+33+...+399+3100

⇒3B=32+33+34+...+3100+3101⇒3B=32+33+34+...+3100+3101

⇒2B=3101−3⇒2B=3101−3

⇒B=3101−32

24 tháng 8 2019

a.Vì x,y là số nguyên dương

     => 1003 và 2y cũng là số nguyên dương                              

 Vì 2008 là số chẵn 

 mà 2y cũng là số chẵn

=> 1003x là số chẵn

Vì 1003 là số lẻ 

mà 1003x là số chẵn

=> x là số chẵn 

=> x chia hết cho 2 (đpcm)

                       Vậy ta có đpcm

a: TH1: n=2k

A=(n+2)(n+5)

=(2k+2)(2k+5)

=2(k+1)(2k+5)\(⋮\)2(1)

TH2: n=2k+1

\(A=\left(n+2\right)\left(n+5\right)\)

\(=\left(2k+1+2\right)\left(2k+1+5\right)\)

\(=\left(2k+3\right)\left(2k+6\right)\)

\(=2\left(k+3\right)\left(2k+3\right)⋮2\)(2)

Từ (1),(2) suy ra \(A⋮2\)

b: TH1: n=3k

\(B=\left(2n+3\right)\left(n+6\right)\left(5n+2\right)\)

\(=\left(2\cdot3k+3\right)\left(3k+6\right)\left(5\cdot3k+2\right)\)

\(=3\left(k+2\right)\left(6k+3\right)\left(15k+2\right)⋮3\left(3\right)\)

TH2: n=3k+1

\(B=\left(2n+3\right)\left(n+6\right)\left(5n+2\right)\)

\(=\left[2\left(3k+1\right)+3\right]\left[3k+1+6\right]\left[5\left(3k+1\right)+2\right]\)

\(=\left(6k+2+3\right)\left(3k+7\right)\left(15k+5+2\right)\)

=(6k+5)(3k+7)(15k+7)

=>B không chia hết cho 3

Vậy: B không chia hết cho 3 với mọi n

14 tháng 12 2023

5n+5n.52=650

5n(1+52)=650

5n.26=650

=>5n=650:26

=>5n=25=52

=>n=2

 

 

a n.n.n+5n chia het cho 6

25 tháng 7 2018

a, n^3 +5n

= n^3 -n+ 6n

= n(n^2-1)+ 6n

=n(n-1)(n+1) +6n

Vì n(n-1)(n+1) là tích 3 số nguyên liên tiếp nên n(n-1)(n+1) chia hết cho 6

Mặt khác, 6n chia hết cho 6.

Suy ra: n(n-1)(n+1) +6n chia hết cho 6

Vậy n^3 + 5n chia hết cho 6

b, n^3 *19n ko chia hết cho 6 được.Bạn nên xem lại đề bài xem có đúng ko.

c, 5n^3 + 15n^2 +10n

= 5n(n^2 +3n+2)

= 5n(n+1)(n+2)

n(n+1)(n+2) chia hết cho 6 nên 5n^3 +15n^2 +10n chia hết cho 6

Chúc bạn học tốt.