tìm x biết (x+12) / 25 + (x+13 ) /24+(X+14) /23=(X+25) /12+(X+24) /13+(X+23) /24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA có 13-13*1+10-10= 13- 13+10-10=0+0=0
(10*11+12*13+14*15+...+22*23+24*25)*0=0
* là dấu x nhe bạn
thick minh nha
( 10 x 11 + 12 x 13 + 14 x 15 + ... + 22 x 23 + 24 x 25) x ( 13 - 13 x 1 + 10 -10)
= ( 10 x 11 + 12 x 13 + 14 x 15 + ... + 22 x 23 + 24 x 25) x 0
= 0
k cho anh nha !!!!!!!!!!!!!!!! : học lớp 5 rùi
\(\frac{x+22}{11}+\frac{x+23}{12}=\frac{x+24}{13}+\frac{x+25}{14}\)
\(\Leftrightarrow\left(\frac{x+22}{11}+1\right)+\left(\frac{x+23}{12}+1\right)=\left(\frac{x+24}{13}+1\right)+\left(\frac{x+25}{14}+1\right)\)
\(\Leftrightarrow\frac{x+33}{11}+\frac{x+35}{12}=\frac{x+37}{13}+\frac{x+39}{14}\)
\(\Leftrightarrow\frac{x+33}{11}+\frac{x+35}{12}-\frac{x+37}{13}-\frac{x+39}{14}=0\)
\(\Leftrightarrow\frac{2184\cdot\left(x+33\right)+2002\cdot\left(x+35\right)-1848\cdot\left(x+37\right)-1716\cdot\left(x+39\right)}{24024}=0\)
\(\Leftrightarrow2184x+72072+2002x+70070-1848x-68376-1716x-66924=0\)
\(\Leftrightarrow622x+6842=0\)
\(\Leftrightarrow x=-11\)
\(x+\left(x+1\right)+\left(x+2\right)+....+13+14=14\Leftrightarrow x+\left(x+1\right)+....+13\Leftrightarrow x=-13\)
\(25+24+23+....+x+\left(x-1\right)+\left(x-2\right)=25\Leftrightarrow24+....+\left(x-2\right)=0\Leftrightarrow x-2=-24\)
\(\Leftrightarrow x=-22\)
\(\dfrac{x^2-26}{10}+\dfrac{x^2-25}{11}\ge\dfrac{x^2-24}{12}+\dfrac{x^2-23}{13}\)
\(\Leftrightarrow\left(\dfrac{x^2-26}{10}-1\right)+\left(\dfrac{x^2-25}{11}-1\right)\ge\left(\dfrac{x^2-24}{12}-1\right)+\left(\dfrac{x^2-23}{13}-1\right)\)
\(\Leftrightarrow\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}\ge\dfrac{x^2-36}{12}+\dfrac{x^2-36}{13}\)
\(\Leftrightarrow\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}-\dfrac{x^2-36}{12}-\dfrac{x^2-36}{13}\ge0\)
\(\Leftrightarrow\left(x^2-36\right)\left(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}\right)\ge0\)
Vì \(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}>0\Rightarrow x^2-36\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-6\\x\ge6\end{matrix}\right.\)
Bất phương trình đó tương đương với:
\(\left(\dfrac{x^2-26}{10}-1\right)+\left(\dfrac{x^2-25}{11}-1\right)\ge\left(\dfrac{x^2-24}{12}-1\right)+\left(\dfrac{x^2-23}{13}-1\right)\)
⇔ \(\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}\ge\dfrac{x^2-36}{12}+\dfrac{x^2-36}{13}\)
⇔ \(\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}-\dfrac{x^2-36}{12}-\dfrac{x^2-36}{13}\ge0\)
⇔ \(\left(x^2-36\right)\left(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}\right)\ge0\)
+)Vì \(\dfrac{1}{10}>\dfrac{1}{11}>\dfrac{1}{12}>\dfrac{1}{13}\) nên \(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}>0\)
⇔ \(x^2-36\ge0\)
⇔ \(x^2\ge36\)
⇔ \(\sqrt{x^2}\ge6\)
⇔ \(\left|x\right|\ge6\)
⇔ \(\left[{}\begin{matrix}x\ge6\\x\le-6\end{matrix}\right.\)
➤ Vậy \(\left[{}\begin{matrix}x\ge6\\x\le-6\end{matrix}\right.\)
a: =>14x+2*(14*13/2)=14
=>14x+14*13=14
=>14x=-12*14
=>x=-12
b: =>3x+(0-1-2-3+1+2+...+25)=25
=>3x+4+...+25=25
=>3x+4+...+24=0
=>3x+(24-4+1)*28/2=0
=>3x+21*28/2=0
=>3x=-21*14
=>x=-7*14=-98
Hình như đề sai nếu viết thế này:x + (x+1) + (x+2) + (x+3) + .... + 13 + 14 = 14
Thì biết chỗ nào ko có x chỗ nào có x
Chúc bn học tốt