cho tam giác ABC có góc A = 90 độ . Kẻ đường cao CH . Biết HB - HA = AC. Hãy tính số đo góc A và B.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
HB=12^2/20=7,2cm
=>HC=20-7,2=12,8cm
\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)
Với 9 tia chung gốc số góc tạo thành là
A. 16 góc
B. 72 góc
C. 36 góc
D. 42 góc
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
HA=9*12/15=108/15=7,2cm
HB=9^2/15=81/15=5,4cm
\(S_{HBA}=\dfrac{1}{2}\cdot7.2\cdot5.4=19.44\left(cm^2\right)\)
Áp dụng Pytago: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=3,6\left(cm\right)\\CH=\dfrac{AC^2}{BC}=6,4\left(cm\right)\end{matrix}\right.\)
Ta có \(\sin\widehat{ACB}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\approx\sin37^0\Leftrightarrow\widehat{ACB}\approx37^0\)
nhầm chỗ HTL nhé
Áp dụng HTL:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH\cdot BC=AC\cdot AB\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=3,6\left(cm\right)\\AH=\dfrac{AC\cdot AB}{BC}=4,8\left(cm\right)\end{matrix}\right.\)
KO SAI ĐÂU ĐỀ ĐÚNG ĐÓ BẠN À
60 độ nha bạn