Tìm 1 số có 4 chữ số biết rằng nếu viết các chữ số ngược lại thì ta được số mới gấp 4 lần số ban đầu.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là abcd ( a khác 0, a; b; c; d < 10 )
Khi viết các chữ số theo thứ tự ngược lại, ta được số dcba ( d khác 0 )
Theo đề bài ta có: abcd x 4 = dcba
- Vì d x 4 là số chẵn nên a chẵn, đồng thời a < 3 ( để dcba là số có 4 chữ số ). Vậy a = 2.
- d x 4 có chữ số cuối là 2 nên d = 8 hoặc d = 3. Nhưng d phải lớn hơn hoặc bằng a x 4 nên d = 8.
Ta được 2bc8 x 4 = 8cb2
( 2000 + b00 + c0 + 8 ) x 4 = 8000 + c00 + b0 + 2
8000 + b x 400 + c x 40 + 32 = 8002 + c x 100 + b x 10
8002 + b x 390 + b x 10 + c x 40 + 30 = 8002 + b x 10 + c x 40 c x 60
nên: b x 390 + 30 = c x 60 ( cùng bớt ở 2 vế các số hạng bằng nhau )
( b x 390 + 30 ) : 30 = c x 60 : 30
b x 13 + 1 = c x 2 ( b; c khác 0 )
Vì c x 2 < 19 nên b x 13 < 18 vậy b = 1
Với b = 1 ta có 14 = c x 2 hay c = 7
Ta tìm được số 2178.
Bài này khó quá! Mình làm nát óc mãi mà nó chẳng ra huhu giúp mình với!
Bạn tham khảo cách giải nhé !
Gọi số đó là abcd ( coi như có dấu gạch trên đầu; nếu là phép nhân mình sẽ ghi dấu .)
Ta có:
dcba = 4.abcd
=> dcba chia hết cho 4 => a là chữ số chẵn
Ta thấy a đương nhiên khác 0; và nếu a ≥ 4 thì 4.abcd ≥ 4.4000 > 9999 ≥ dcba
Do vậy a = 2
=> dcba = 4.abcd ≥ 4.2000 = 8000 => d=8 hoặc d=9
Tuy nhiên do dcba = 4.abcd nên 4.d phải tận cùng bằng chữ số a.
Ta thấy: 4.8 = 32 ; 4.9 = 36
Vậy d = 8
Ta lại có: dcba = 100.dc +ba = 4.25.dc +ba chia hết cho 4
nên ba chia hết cho 4
Do a =2 nên b chỉ có thể = 1;3;5;7;9
Tuy nhiên nếu b ≥ 3 thì
8cba = 4.2bcd ≥ 4.2300 = 9200 (vô lý)
Vậy b = 1
Bây giờ ta có: 8c12 = 4.21c8
<=> 8012 +100.c = 4.2108 +4.10.c
<=> 60.c = 420
<=> c = 7
Vậy số cần tìm là: 2178.
gọi số cần tìm là abcd ( a; b; c;d là chữ số ; a và d khác 0)
Theo bài cho ta có:
dcba = abcd x 4
=> d x 1000 + c x 100 + b x 10 + a = (a x 1000 + b x 100 + c x 10 + d) x 4
=> d x 1000 + c x 100 + b x 10 + a = a x 4000 + b x 400 + c x 40 + d x 4
=> d x 996 + c x 60 = a x 3 999 + b x 390
=> d x 332 + c x 20 = a x 1333 + b x 130
Nhận thấy d x 332 + c x 20 có kết quả là số chẵn ; b x 130 là số chẵn nên a x 1333 là số chẵn => a chẵn
Mà dcba = abcd x 4 < 10 000 nên abcd < 2500 => a = 1 hoặc a = 2. a chẵn
=> a = 2
Ta có: d x 332 + c x 20 = 2 x 1333 + b x 130
d x 332 + c x 20 = b x 130 + 2666
d x 166 + c x 10 = b x 65 + 1333
Nhận thấy: d x 166 + c x 10 có kết quả là số chẵn nên b x 65 + 1333 chẵn => b x 65 lẻ => b lẻ . Vậy b x 65 có tận cùng là chữ số 5
=> b x 65 + 1333 có tận cùng là chữ số 8
ta có: c x 10 tận cùng là chữ số 0 nên d x 166 có tận cùng là chữ số 8 => d = 3 hoặc d = 8
Nếu d = 3 thì 3 x 166 + c x 10 = b x 65 + 1333 => 498 + c x 10 = b x 65 + 1333 => c x 10 = b x 65 + 835 . không có chữ số thỏa mãn vì c lớn nhất có thể bằng 9.
Nếu d = 8 thì 8 x 166 + c x 10 = b x 65 + 1333 => 1328 + c x 10 = b x 65 + 1333 => c x 10 = b x 65 + 5 => c = 7 ; b = 1
Vậy số đó là 2178
Gọi số cần tìm là : ab
Số đó viết ngc lại là : ba
Theo bài ra ta có : ba = 4ab + 3
Gọi số đó là abcd
Ta có : dcba = 4 x abcd
=> dcba chia hết cho 4 => a là chữ số chẵn
Ta thấy a đương nhiên khác 0; và nếu a ≥ 4 thì 4.abcd ≥ 4.4000 > 9999 ≥ dcba
Do vậy a = 2
=> dcba = 4.abcd ≥ 4.2000 = 8000 => d = 8 hoặc d = 9
Ta thấy: 4.8 = 32 ; 4.9 = 36
Vậy d = 8
Ta lại có: dcba = 100.dc +ba = 4.25.dc +ba chia hết cho 4 nên ba chia hết cho 4
Do a =2 nên b chỉ có thể = 1;3;5;7;9
Tuy nhiên nếu b ≥ 3 thì : 8cba = 4.2bcd ≥ 4.2300 = 9200 (vô lý)
Vậy b = 1
Bây giờ ta có: 8c12 = 4.21c8
<=> 8012 +100.c = 4.2108 +4.10.c
<=> 60.c = 420
<=> c = 7
Vậy số cần tìm là: 2178
Đặt số ban đầu là abcd
Sau khi viết ngược là : dcba
Rồi bạn tự giải tiếp nha
Gọi số tự nhiên đó là ab (ab >10). Theo đề bài ta có :
Số đó gấp 4 lần tổng các chữ số của nó nên ta có phương trình:
\(ab=4\left(a+b\right)\Leftrightarrow10a+b=4a+4b\) \(\Leftrightarrow10a-4a+b-4b=0\Leftrightarrow6a-3b=0\) ⇔ 2a-b=0(1)
Nếu viết 2 chữ số của nó theo thứ tự ngược lại thì được số mới lớn hơn số ban đầu 36 đơn vị nên ta có phương trình :
\(ba-ab=36\Leftrightarrow10b+a-10a-b=36\)
\(\Leftrightarrow9b-9a=36\Leftrightarrow b-a=4\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình: \(\left\{{}\begin{matrix}2a-b=0\left(1\right)\\b-a=4\left(2\right)\end{matrix}\right.\)
Cộng từng vế của (1) và (2) ta được : a=4 Thay vào (2) ta được:
\(b-4=4\Leftrightarrow b=8\) ⇒ab=48. Vậy...
Gợi ý: Gọi số cần tìm là abcd. (a # 0), 0 < a, b, c, d < 10. abcd x 4 = dcba nên a có thể nhận giá trị 1 hoặc 2, không thể bằng 3 vì khi đó 4 lần abcd sẽ trở thành số có 5 chữ số. Xét TH1: a = 1, dễ thấy vô lí vì 1bcd x 4 = dcb1. Xét TH2: a = 2, ta có: 2bcd x 4 = dcb2. => d có thể bằng 3 hoặc 8. Xét tiếp từng TH, KL. (Bạn tự giải)
Tìm số tự nhiên có 4 chữ số, biết rằng khi viết ngược số đó lại ta được số mới gấp 4 lần số ban đầu.
Gợi ý:
Gọi số cần tìm là abcd. (a # 0), 0 < a, b, c, d < 10.
abcd x 4 = dcba nên a có thể nhận giá trị 1 hoặc 2, không thể bằng 3 vì khi đó 4 lần abcd sẽ trở thành số có 5 chữ số.
Xét TH1: a = 1, dễ thấy vô lí vì 1bcd x 4 = dcb1.
Xét TH2: a = 2, ta có: 2bcd x 4 = dcb2.
=> d có thể bằng 3 hoặc 8.
Xét tiếp từng TH, KL. (Bạn tự giải)
??
Thì có làm sao đâu.
Gọi số đó là abcd (a khác 0;a;b;c;d là chữ số)
Viết theo thứ tự ngược lại ta có số ddcba ta có:
abcd.4=dcba
(a.1000+b.100+c.10+d).4=d.1000+c.100+b.10+a.
a.4000+b.400+c.40+d=d.1000+c.100+b.10+a.
a.3999+b.390=d.9999+c.60