So sánh A và B: (Làm đầy đủ nha rồi mik like cho)
A= 20+22+24+...+22014
B= 22015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(1+2+2^2)+2^3(1+2+2^2)+...+2^2013(1+2+2^2)+2^2016
=7(1+2^3+...+2^2013)+2^2016
Vì 2^2016 chia 7 dư 1
nên A chia 7 dư 1
Vì 20;22;24 đều chia hết cho 2 nên:
a) Để B chia hết cho 2 thì x cũng p chia hết cho 2
b) Đê B ko cia hết cho 2 thì x cx p k chia hết cho 2
tk m nhé
a) 22 chia hết cho 2
20 chia hết cho 2
24 chia hết cho 2
=> x chia hết cho 2
x= số chẵn
b)ngược lại với trên
x= số lẻ
d-c=7⇒d=7+c=7+8=15
\(\Rightarrow\dfrac{c}{d}=\dfrac{8}{15}\)
b-2=a⇒b=a+2=7+2=9
\(\Rightarrow\dfrac{a}{b}=\dfrac{7}{9}\)
Ta có: \(\dfrac{8}{15}=\dfrac{8\times3}{15\times3}=\dfrac{24}{45}\)
\(\dfrac{7}{9}=\dfrac{7\times5}{9\times5}=\dfrac{35}{45}\)
Vì \(\dfrac{24}{45}< \dfrac{35}{45}\Rightarrow\dfrac{c}{d}< \dfrac{a}{b}\)
a) Ta có: \(2^{13}< 2^{16}\)
Mà \(7.2^{13}\)
\(\Rightarrow7.2^{13}>2^{16}\)
b) Ta có: \(199^{20}=\left(199^4\right)^5\)
\(2003^{15}=\left(2003^3\right)^5\)
Vì \(199^4< 2003^3\)
Vậy \(199^{20}< 2003^{15}\)
c) Ta có: \(3^{39}=\left(3^{13}\right)^3\)
\(11^{21}=\left(11^7\right)^3\)
Vì \(3^{14}< 11^7\)
Vậy \(3^{39}< 11^{21}\)
xét A và B, ta thấy:
20/39>14/39
22/27>22/29
18/43<18/41
Ta có: 20/39+22/27>14/39+22/29
2012^2013+2013^2013<2013^2013+2013^2014
\(10A=\frac{10\left(10^{29}+10^{10}\right)}{10^{30}+10^{10}}=\frac{10^{30}+10^{11}}{10^{30}+10^{10}}=1+\frac{10^{11}-10^{10}}{10^{30}+10^{10}}\)
\(10B=\frac{10\left(10^{30}+10^{10}\right)}{10^{31}+10^{10}}=\frac{10^{31}+10^{11}}{10^{31}+10^{10}}=1+\frac{10^{11}-10^{10}}{10^{31}+10^{10}}\)
\(10^{30}+10^{10}< 10^{31}+10^{10}\Rightarrow\frac{10^{11}-10^{10}}{10^{30}+10^{10}}>\frac{10^{11}-10^{10}}{10^{31}+10^{10}}\)
\(\Rightarrow10A=1+\frac{10^{11}-10^{10}}{10^{30}+10^{10}}>10B=1+\frac{10^{11}-10^{10}}{10^{31}+10^{10}}\)
\(\Rightarrow A>B\)
A= 20+22+24+...+22014
suy ra : 4A=22+24+ 24 + 26 +.....+22016
4A-A = 22+24+ 24 + 26 +.....+22016 - 20- 22 - 24 - ...-22014
3A = 22016 -1
A = 22016 - 1 / 3