Cho tam giác ABC có số đo diện tích bằng độ dài cạnh BC. Tính số đo đường cao AH của tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=10^2-6^2=64\)
=>\(AC=\sqrt{64}=8\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=48/10=4,8(cm)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)
nên \(\widehat{B}\simeq53^0\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH\cdot10=6^2=36\)
=>BH=36/10=3,6(cm)
ΔAHB vuông tại H
=>\(S_{HAB}=\dfrac{1}{2}\cdot HA\cdot HB=\dfrac{1}{2}\cdot4,8\cdot3,6=8,64\left(cm^2\right)\)
a) Để tính độ dài đường cao \(AH\) và số đo \(\angle B\), chúng ta có thể sử dụng các quy tắc trong tam giác vuông.
Chúng ta biết rằng trong tam giác vuông, độ dài của đường cao \(AH\) từ đỉnh vuông \(A\) xuống cạnh huyền \(BC\) có thể được tính bằng công thức:
\[AH = \frac{1}{2} \times BC\]
Trong trường hợp này:
\[AH = \frac{1}{2} \times 10 \, \text{cm} = 5 \, \text{cm}\]
Số đo của góc \(\angle B\) có thể được tính bằng cách sử dụng hàm tan trong tam giác vuông:
\[\tan B = \frac{AH}{AB}\]
\[\angle B = \arctan\left(\frac{AH}{AB}\right)\]
Trong trường hợp này:
\[\tan B = \frac{5}{6}\]
\[\angle B = \arctan\left(\frac{5}{6}\right)\]
Bạn có thể sử dụng máy tính để tính toán giá trị chính xác của \(\angle B\).
b) Để tính diện tích tam giác \(AHB\), chúng ta sử dụng công thức diện tích tam giác:
\[S_{AHB} = \frac{1}{2} \times \text{độ dài } AH \times \text{độ dài } AB\]
Trong trường hợp này:
\[S_{AHB} = \frac{1}{2} \times 5 \, \text{cm} \times 6 \, \text{cm} = 15 \, \text{cm}^2\]
Vậy, độ dài của đường cao \(AH\) là \(5 \, \text{cm}\), số đo của góc \(\angle B\) có thể được tính, và diện tích tam giác \(AHB\) là \(15 \, \text{cm}^2\).
`a,`
Vì `\Delta ABC` cân tại A:
`-> \text {AB = AC, }` $\widehat {B} = \widehat {C}$.
Xét `\Delta AHB` và `\Delta AHC` :
`\text {AB = AC}`
$\widehat {B} = \widehat {C}$
$\widehat {AHB} = \widehat {AHC} (=90^0) (\text {AH là đường cao})$
`=> \Delta AHB = \Delta AHC (ch-gn)`
`b,`
Vì `\Delta AHB = \Delta AHC (a)`
`->` $\widehat {BAH} = \widehat {CAH} (\text {2 góc tương ứng})$
Mà $\widehat {BAH} = 35^0$
`->` $\widehat {BAH} = \widehat {CAH} = 35^0.$
`c,`
`\Delta AHB = \Delta AHC (a)`
`-> \text {BH = CH (2 cạnh tương ứng)}`
Mà `\text {BH = 4 cm}`
`-> \text {BH = CH = 4 cm}`
Bài 1 Giải
Chu vi HCN là:
(12+8).2= 40(cm)
Diện tích HCN là:
12.8= 96(cm)
Bài 2 Chu vi hình vuông là:
20.4=80(cm)
Mà chu vi hình vuông bằng chu vi HCN nên:
Chiều rộng HCN là:
(80:2) -25=15(cm)
Diện tích HCN là:
15.25=375(cm)
Bài 3 Độ dài cạnh BC là:
120:10.2=24(cm)
Bài 4 Diện tích tam giác ABC là:
( 5.8):2 = 20(cm)
Chúc bn hok tốt~~
Diện tích của tam giác ABM là: 25 x 12 : 2 = 150 cm2
Tam giác ABM và tam giác AMN có chung chiều cao xuất phát từ đỉnh A hạ xuống BC; đáy BM = 2/3 đáy MN
=> SABM = 2323 x SAMN
SAMN = SABM : 2323 = 150 : 2323 = 225 cm2
+) Tam giác ANC và tam giác AMN có chung chiều cao hạ từ đỉnh A xuống cạnh BC; đáy NC = 1/2 đáy MN
=> SANC = 1212 x SAMN = 1212 x 225 = 112,5 cm2
Vậy SABC = SABM + SAMN + SANC = 150 + 225 + 112, 5 = 487,5 cm2