K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2021

TXĐ: `D=RR \\ {m/2}`.

`y'=(m^2+4)/((2x-m)^2)`

Hàm số đồng biến trên `(-2;3] <=>` $\begin{cases}m^2+4>0 \forall m\\ \dfrac{m}{2} \notin (-2;3]\\\end{cases}$ `<=>` $\begin{cases}m>6\\m≤-4\\\end{cases}$

Vậy `m>6 \vee m <= -4` thỏa mãn.

 

 

6 tháng 7 2023

chép?

7 tháng 7 2023

chép ở đâu ?

NV
22 tháng 6 2021

1.

\(y'=m-3cos3x\)

Hàm đồng biến trên R khi và chỉ khi \(m-3cos3x\ge0\) ; \(\forall x\)

\(\Leftrightarrow m\ge3cos3x\) ; \(\forall x\)

\(\Leftrightarrow m\ge\max\limits_{x\in R}\left(3cos3x\right)\)

\(\Leftrightarrow m\ge3\)

NV
22 tháng 6 2021

2.

\(y'=1-m.sinx\)

Hàm đồng biến trên R khi và chỉ khi:

\(1-m.sinx\ge0\) ; \(\forall x\)

\(\Leftrightarrow1\ge m.sinx\) ; \(\forall x\)

- Với \(m=0\) thỏa mãn

- Với \(m< 0\Rightarrow\dfrac{1}{m}\le sinx\Leftrightarrow\dfrac{1}{m}\le\min\limits_R\left(sinx\right)=-1\)

\(\Rightarrow m\ge-1\)

- Với \(m>0\Rightarrow\dfrac{1}{m}\ge sinx\Leftrightarrow\dfrac{1}{m}\ge\max\limits_R\left(sinx\right)=1\)

\(\Rightarrow m\le1\)

Kết hợp lại ta được: \(-1\le m\le1\)

26 tháng 2 2017

2 tháng 2 2019

4 tháng 3 2019

Đáp án A

14 tháng 7 2017

Đáp án C

Ta có:  y ' = m − 2 x − 1 2

Hàm số đồng biến trên các khoảng xác định  ⇔ y ' > 0 ⇔ m − 2 > 0 ⇔ m > 2

10 tháng 5 2022

lo

 

1 tháng 1 2020