K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2021

\(1.\hept{\begin{cases}2-2\cos x\ge0\\\sqrt{2-2\cos x}-2\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}\cos x\le1\left(đ\right)\\\cos x\ne-1\end{cases}}\Leftrightarrow x\ne\pi+k2\pi\left(k\in Z\right)\)

\(2.\hept{\begin{cases}\sin3x\ne0\\1+\sin3x\ge0\\1-\sqrt{1+\sin3x}\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x\ne k\pi\\\sin3x\ge-1\left(đ\right)\\\sin3x\ne0\end{cases}}\Leftrightarrow x\ne\frac{k\pi}{3}\left(k\in Z\right)\)

\(3.\hept{\begin{cases}\sin2x\ne0\\\sin x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\ne k\pi\\x\ne k\pi\end{cases}}\Leftrightarrow x\ne\frac{k\pi}{2}\left(k\in Z\right)\)

25 tháng 6 2021

1. \(sin\left(\dfrac{\pi}{3}-x\right)\ne0\Leftrightarrow\dfrac{\pi}{3}-x\ne k\pi\Leftrightarrow x\ne\dfrac{\pi}{3}-k\pi\)

2. \(cos2x\ne0\Leftrightarrow2x\ne\dfrac{\pi}{2}+k\pi\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

3. \(\sqrt{1+sinx}-\sqrt{2}\ge0\Leftrightarrow1+sinx\ge2\Leftrightarrow sinx\ge1\Leftrightarrow sinx=1\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\)

4. \(\sqrt{2-2cosx}-2\ne0\Leftrightarrow2-2cosx\ne4\Leftrightarrow cosx\ne-1\Leftrightarrow x\ne\pi+k2\pi\)

5. \(1-\sqrt{1+sin3x}\ne0\Leftrightarrow sin3x\ne0\Leftrightarrow3x\ne k\pi\Leftrightarrow x\ne\dfrac{k\pi}{3}\)

26 tháng 6 2021

câu 4 sao ra 2-2cosx\(\ne\)4 ạ

NV
31 tháng 5 2019

1/ ĐKXĐ: \(cos2x\ne0\Rightarrow2x\ne k\frac{\pi}{2}\Rightarrow x\ne\frac{k\pi}{4}\)

2/ ĐKXĐ:

\(\sqrt{2-2cosx}\ne2\Rightarrow2-2cosx\ne4\)

\(\Rightarrow cosx\ne-1\Rightarrow x\ne\pi+k2\pi\)

3/ ĐKXĐ: \(sin3x\ne0\Rightarrow3x\ne k\pi\Rightarrow x\ne\frac{k\pi}{3}\)

NV
31 tháng 5 2019

Khác nhau bạn

Ở câu 3, \(cot3x\) xác định nên \(sin3x\ne0\)

\(1-\sqrt{1+sin3x}\ne0\Rightarrow1+sin3x\ne1\Rightarrow sin3x\ne0\)

Cả 2 điều kiện xác định là cot3x xác đinh và mẫu xác định đều giống nhau là \(sin3x\ne0\)

18 tháng 7 2020

a) ĐK:  \(\cos x\ne0\)( vì tan x = sinx/cosx nên cos x khác 0)

<=> \(x\ne\frac{\pi}{2}+k\pi\); k thuộc Z

TXĐ: \(ℝ\backslash\left\{\frac{\pi}{2}+k\pi\right\}\); k thuộc Z

b) ĐK: \(1+\cos2x\ne0\Leftrightarrow\cos2x\ne-1\Leftrightarrow2x\ne\pi+k2\pi\Leftrightarrow x\ne\frac{\pi}{2}+k\pi\); k thuộc Z

=> TXĐ: \(ℝ\backslash\left\{\frac{\pi}{2}+k\pi\right\}\); k thuộc Z

c) ĐK: \(\hept{\begin{cases}\cot x-\sqrt{3}\ne0\\\sin x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne\frac{\pi}{6}+k\pi\text{​​}\text{​​}\\x\ne l\pi\end{cases}}\); k,l thuộc Z

=>TXĐ: ....

d) ĐK: \(1-2\sin^2x\ne0\Leftrightarrow\cos2x\ne0\Leftrightarrow2x\ne\frac{\pi}{2}+k\pi\Leftrightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)

=> TXĐ:...

NV
30 tháng 6 2021

ĐKXĐ:

a. Không hiểu đề bài là gì

b. \(3-2cosx\ge0\)

\(\Leftrightarrow cosx\le\dfrac{3}{2}\) (luôn đúng)

Vậy \(D=R\)

c. \(\left\{{}\begin{matrix}\dfrac{1+cosx}{1-cosx}\ge0\left(luôn-đúng\right)\\1-cosx\ne0\end{matrix}\right.\)

\(\Leftrightarrow cosx\ne1\Leftrightarrow x\ne k2\pi\)

1: ĐKXĐ: 3-cosx>0

=>cosx<3(luôn đúng)

2: ĐKXĐ: 1-sin 3x>=0

=>sin 3x<=1(luôn đúng)

3: ĐKXĐ: sin x<>0 và 2x<>pi/2+kpi

=>x<>kpi và x<>pi/4+kpi/2

4: ĐKXĐ: 2x-1>=0

=>x>=1/2

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) \(y = \frac{1}{{{x^2} - x}}\) xác định \( \Leftrightarrow {x^2} - x \ne 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\x \ne 1\end{array} \right.\)

Tập xác định \(D = \mathbb{R}\backslash \left\{ {0;1} \right\}\)

b) \(y = \sqrt {{x^2} - 4x + 3} \) xác định \( \Leftrightarrow {x^2} - 4x + 3 \ge 0 \Leftrightarrow \left\{ \begin{array}{l}x \ge 3\\x \le 1\end{array} \right.\)

Tập xác định \(D = \left( { - \infty ;1} \right] \cup \left[ {3; + \infty } \right)\)

c) \(y = \frac{1}{{\sqrt {x - 1} }}\) xác định \( \Leftrightarrow x - 1 > 0 \Leftrightarrow x > 1\)

Tập xác định \(D = \left( {1; + \infty } \right)\)