K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

Ta có :góc DAE=góc BAC (đối đỉnh)

Xét tam giác ABC cân tại A : \(ABC=ACB=\frac{180^0-BAC}{2}\)

Xét tam giác DAE cân tại A: \(ADE=AED=\frac{180^0-DAE}{2}\)

=>góc ABC=góc ACB=góc ADE=góc AED

Vì góc ADE=góc ACB,mà chúng ở vị trí SLT

=>DE//BC

=>tg BEDC là hình thang

Xét tam giác DAB và tam giác EAC :

góc DAB=góc EAC (đối đỉnh)

AD=AE(gt)

AB=AC(tam giác ABC cân tại A)

=>tg DAB=tg EAC (c.g.c)

=>BD=EC (cặp cạnh t.ứng)

Vì ht BEDC có BD=EC

=>BEDC là hình thang cân

a: Xét ΔAED và ΔACB có 

\(\dfrac{AE}{AC}=\dfrac{AD}{AB}\)

\(\widehat{EAD}=\widehat{CAB}\)

Do đó: ΔAED\(\sim\)ΔACB

Suy ra: \(\widehat{AED}=\widehat{ACB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên DE//BC

Xét tứ giác BEDC có DE//BC

nên BEDC là hình thang

mà EC=BD

nên BEDC là hình thang cân

27 tháng 2 2020

b1 : 

A B C I

tự cm tam giác ABC vuông

=> góc ABC + góc ACB = 90 (đl)

BI là pg của góc ABC => góc IBC = góc ABC : 2

CI là pg của góc ACB => góc ICB = góc ACB : 2

=> góc IBC + góc ICB = (góc ABC + góc ACB)  : 2

=> góc IBC + góc ICB = 45

xét tam giác IBC => góc IBC + góc ICB + góc BIC = 180

=> góc BIC = 135

a: Xét ΔAMD vuông tại M và ΔAND vuông tại N có

AD chung

góc MAD=góc NAD

=>ΔMAD=ΔNAD

=>AM=AN

b: Xét ΔACB có AM/AB=AN/AC

nên MN//BC

c: Xét ΔADE có

AM vừa là đường cao, vừa là trung tuýen

=>ΔADE cân tại A

=>AD=AE

Xét ΔADF có

AN vừa là đường cao, vừa là trung tuyến

=>ΔADF cân tại A

=>AD=AF

=>AE=AF

=>ΔAEFcân tạiA