(1/3x + 2y ) (1/9x^2 - 2/3xy+ 4y^2)
Liên quan đến hẳng đẳng thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3}xy+4y^2\right)\)
\(=\left(\frac{1}{3}x+2y\right)\left[\left(\frac{1}{3}x\right)^2-\frac{1}{3}x.2y+\left(2y\right)^2\right]\)
\(=\left(\frac{1}{3}x\right)^3+\left(2y\right)^3\)
\(=\frac{1}{27}x^3+8y^3\)
3x4y2+3x3y2+3xy2+3y2=3x3y2(x+1)+3y2(x+1)3x4y2+3x3y2+3xy2+3y2=3x3y2(x+1)+3y2(x+1)
=(3x3y2+3y2)(x+1)=3y2(x3+1)(x+1)=(3x3y2+3y2)(x+1)=3y2(x3+1)(x+1)
=3y2(x+1)(x2−x+1)(x+1)=3y2(x2−x+1)(x+1)2
chúc bn hc tốt
a) \(=x^2-\left(2y\right)^2=\left(x-2y\right)\left(x+2y\right)\)
b) \(=x^2-\left(3y\right)^2=\left(x-3y\right)\left(x+3y\right)\)
c) \(=\left(2x-1\right)^2-\left(2y\right)^2=\left(2x-1-2y\right)\left(2x-1+2y\right)\)
d) \(=x^2-10xy+\left(5y\right)^2=\left(x-5y\right)^2\)
e) \(=\left(3x\right)^2-6x+1=\left(3x-1\right)^2\)
f) \(=\left(5x\right)^2+20x+4=\left(5x+2\right)^2\)
\(\left(x+4\right)\left(x^2-4x+16\right)\)
\(=x^3-4x^2+16x+4x^2-16x+64\)
\(=x^3+64\)
\(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)
\(=x^2+3x^2y+9xy^2-3x^2y-9xy^2-27y^3\)
\(=\)\(x^2-27y^3\)
\(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3xy}+4y^2\right)\)
\(=\)\(\frac{x^3}{27}-\frac{2}{9xy}+\frac{4xy^2}{3}+\frac{2x^2y}{9}-\frac{4y}{3xy}+8y^3\)
làm nốt nha
\(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3}xy+4y^2\right)\)
\(=\left(\frac{1}{3}x\right)^3+\left(2y\right)^3\)
\(=\frac{1}{27}x^3+8y^3\)
a) \(\left(x^2-\dfrac{1}{3}\right)\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)\) (sửa \(\dfrac{x}{2}\rightarrow x^2\))
\(=\left(x^2\right)^3-\left(\dfrac{1}{3}\right)^3\)
\(=x^6-\dfrac{1}{27}\)
b) \(\left(\dfrac{1}{3}x+2y\right)\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)\)
\(=\left(\dfrac{1}{3}x\right)^3+\left(2y\right)^3\)
\(=\dfrac{1}{27}x^3+8y^3\)
Lưu ý : Áp dụng hằng đẳng thức đáng nhớ \(a^3\pm b^3=...\)
Ta có: \(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3}xy+4y^2\right)\)
\(=\left(\frac{1}{3}x+2y\right)\left[\left(\frac{1}{3}x\right)^2-\left(\frac{1}{3}x\right)\cdot\left(2y\right)+\left(2y\right)^2\right]\)
\(=\left(\frac{1}{3}x\right)^3+\left(2y\right)^3=\frac{1}{27}x^3+8y^3\)