K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 6 2021

a.

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x+2}=a\\\sqrt[3]{x-2}=b\end{matrix}\right.\) ta được:

\(2a^2-b^2=ab\)

\(\Leftrightarrow\left(a-b\right)\left(2a+b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\2a=-b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a^3=b^3\\8a^3=-b^3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=x-2\left(vô-nghiệm\right)\\8\left(x+2\right)=-\left(x-2\right)\end{matrix}\right.\)

\(\Leftrightarrow x=-\dfrac{14}{9}\)

NV
26 tháng 6 2021

b.

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{65+x}=a\\\sqrt[3]{65-x}=b\end{matrix}\right.\)

\(\Rightarrow a^2+4b^2=5ab\)

\(\Leftrightarrow\left(a-b\right)\left(a-4b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=4b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a^3=b^3\\a^3=64b^3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}65+x=65-x\\65+x=64\left(65-x\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)

20 tháng 6 2018

Đặt \(\hept{\begin{cases}\sqrt[3]{65+x}=a\\\sqrt[3]{65-x}=b\end{cases}}\)

\(\Rightarrow a^2+4b^2=5ab\)

\(\Leftrightarrow\left(b-a\right)\left(4b-a\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\a=4b\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}\sqrt[3]{65+x}=\sqrt[3]{65-x}\\\sqrt[3]{65+x}=4\sqrt[3]{65-x}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}65+x=65-x\\65+x=4\left(65-x\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=39\end{cases}}\)

3 tháng 11 2019

a) Đặt \(\sqrt[3]{65+x}=a;\sqrt[3]{65-x}=b\)

Nhận xét x = 65 không phải là nghiệm. Xét x khác 65 thì \(b\ne0\)

PT \(\Leftrightarrow a^2+b^2-5ab=0\)

\(\Leftrightarrow\left(\frac{a}{b}\right)^2-5\left(\frac{a}{b}\right)+1=0\Leftrightarrow t^2-5t+1=0\left(\text{đặt }t=\frac{a}{b}\right)\)

Hình như chị ghi đề sai, số quá xấu:((

NV
3 tháng 11 2019

a/ Nghiệm xấu quá

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{65+x}=a\\\sqrt[3]{65-x}=b\end{matrix}\right.\) ta được:

\(a^2+b^2=5ab\Leftrightarrow a^2-5ab+b^2=0\)

\(\Leftrightarrow\left(a-\frac{5+\sqrt{21}}{2}b\right)\left(a-\frac{5-\sqrt{21}}{2}b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=\frac{5+\sqrt{21}}{2}b\\a=\frac{5-\sqrt{21}}{2}b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt[3]{65+x}=\frac{5+\sqrt{21}}{2}\sqrt[3]{65-x}\\\sqrt[3]{65+x}=\frac{5-\sqrt{21}}{2}\sqrt[3]{65-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}65+x=\left(\frac{5+\sqrt{21}}{2}\right)^3\left(65-x\right)\\65+x=\left(\frac{5-\sqrt{21}}{2}\right)^3\left(65-x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(56+12\sqrt{21}\right)x=65\left(54+12\sqrt{21}\right)\\\left(56-12\sqrt{21}\right)x=65\left(54-12\sqrt{21}\right)\end{matrix}\right.\) \(\Rightarrow x=...\)

b/ \(\Leftrightarrow\sqrt[3]{x-5}+\sqrt[3]{2x-1}=\sqrt[3]{3x+2}-2\)

\(\Leftrightarrow3x-6+3\sqrt[3]{\left(x-5\right)\left(2x-1\right)}\left(\sqrt[3]{3x+2}-2\right)=3x-6-6\sqrt[3]{3x+2}\left(\sqrt[3]{3x+2}-2\right)\)

\(\Leftrightarrow\sqrt[3]{\left(x-5\right)\left(2x-1\right)}\left(\sqrt[3]{3x+2}-2\right)=-2\sqrt[3]{3x+2}\left(\sqrt[3]{3x+2}-2\right)\)

\(\Leftrightarrow\left(\sqrt[3]{3x+2}-2\right)\left(\sqrt[3]{\left(x-5\right)\left(2x-1\right)}+2\sqrt[3]{3x+2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+2=8\Rightarrow x=2\\\left(x-5\right)\left(2x-1\right)=-8\left(3x+2\right)\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x^2-13x+21=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=-\frac{7}{2}\end{matrix}\right.\)

25 tháng 10 2020

b, ĐKXĐ: \(x\ge\frac{5}{2}\)

\(pt\Leftrightarrow\sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}+1\right)^2}=4\)

\(\Leftrightarrow\sqrt{2x-5}=3\)

\(\Leftrightarrow x=7\left(tm\right)\)

25 tháng 10 2020

a, ĐKXĐ: \(x\ge5\)

\(pt\Leftrightarrow\sqrt{x-5+4\sqrt{x-5}+4}+\sqrt{x-5+8\sqrt{x-5}+16}=0\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-5}+2\right)^2}+\sqrt{\left(\sqrt{x-5}+4\right)^2}=0\)

\(\Leftrightarrow2\sqrt{x-5}+6=0\)

\(\Leftrightarrow\sqrt{x-5}=-3\)

Phương trình vô nghiệm

22 tháng 2 2016

Đặt \(a=\sqrt[3]{\left(65-x\right)};b=\sqrt[3]{65+x}\)

pt<=> \(a^2+b^2=ab\Leftrightarrow\begin{cases}a=0\\b=0\end{cases}\)

nên vô lí 

PT vô nghiệm

7 tháng 12 2015

Lập phương 2 vế ta đc

\(\left(65+x\right)^2+64\left(65-x\right)^2+3\sqrt[3]{64\left(65-x\right)^2\left(65+x\right)^x}.\left(\sqrt[3]{\left(65+x\right)^2}+\sqrt[3]{\left(65-x\right)^2}\right)=125\left(65^2-x^2\right)\)

<=>\(65x^2-8190x+274625+3\sqrt[3]{64\left(65^2-x^2\right)}.\sqrt[3]{65^2-x^2}=125\left(65^2-x^2\right)\)\(65x^2-8190x+274625+3.4.\sqrt[3]{65^2-x^2}=125\left(65^2-x^2\right)\)

7 tháng 12 2015

Đặt 

 \(\sqrt[3]{\left(65+x\right)}=a;\sqrt[3]{65-x}=b\) => \(a^3+b^3=130\)  ta có Hpt :

\(a^2+4b^2=5ab\) (1) 

\(a^3+b^3=130\) (2)

từ pt (1) => a = b Hoặc a = 4b 

Thay vào pt (2) tìm ra b => a 

 

 

 

19 tháng 8 2015

Đặt \(a=\sqrt[3]{65+x},b=\sqrt[3]{65-x}\)  thì phương trình viết thành

\(a^2+4b^2=5ab\Leftrightarrow\left(a-b\right)\left(a-4b\right)=0.\)

Suy ra \(a=b\)   hoặc  \(a=4b\)  

Trường hợp 1. Nếu \(a=b\Leftrightarrow x=0.\)  Khi đó \(A=5\cdot\sqrt[3]{65^2}\)

Trường hợp 2. Nếu \(a=4b\Leftrightarrow65+x=65\left(65-x\right)\Leftrightarrow66x=65\cdot64\Leftrightarrow x=\frac{65\cdot64}{66}\)  Khi đó \(A=5\cdot65\sqrt[3]{\frac{4}{66^2}}\)

2 tháng 9 2018

Trả lời:

Khó quá 

Chúc bn hok tốt

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

a.

$x^2-11=0$

$\Leftrightarrow x^2=11$

$\Leftrightarrow x=\pm \sqrt{11}$

b. $x^2-12x+52=0$

$\Leftrightarrow (x^2-12x+36)+16=0$

$\Leftrightarrow (x-6)^2=-16< 0$ (vô lý)

Vậy pt vô nghiệm.

c.

$x^2-3x-28=0$

$\Leftrightarrow x^2+4x-7x-28=0$

$\Leftrightarrow x(x+4)-7(x+4)=0$

$\Leftrightarrow (x+4)(x-7)=0$

$\Leftrightarrow x+4=0$ hoặc $x-7=0$

$\Leftrightarrow x=-4$ hoặc $x=7$

 

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

d.

$x^2-11x+38=0$

$\Leftrightarrow (x^2-11x+5,5^2)+7,75=0$

$\Leftrightarrow (x-5,5)^2=-7,75< 0$ (vô lý)

Vậy pt vô nghiệm

e.

$6x^2+71x+175=0$

$\Leftrightarrow 6x^2+21x+50x+175=0$

$\Leftrightarrow 3x(2x+7)+25(2x+7)=0$

$\Leftrightarrow (3x+25)(2x+7)=0$

$\Leftrightarrow 3x+25=0$ hoặc $2x+7=0$

$\Leftrightarrow x=-\frac{25}{3}$ hoặc $x=-\frac{7}{2}$

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290