tìm (2n+1,n.n+1) với n thuộc z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN(2n+1;n(n+1))=d
Ta có: 2n+1 chia hết cho d; n(n+1) chia hết cho d =>vì n chia hết cho d nên n+1 chia hết cho d
=>2n+1-(n+1) chia hết cho d
=>n+1 chia hết cho d
Vì n chia hết cho d nên 1 chia hết cho d hay d=1
=>ƯCLN(2n+1;n(n+1))=1
cách giải mk ko chắc chắn mấy nhưng đáp án thì chắc chắn đúng
Mình giải theo cách lớp 6 nhé :
a)Ta có: 2n+1 chia hết cho n-3 (1)
Mà n-3 chia hết cho n-3
=>2(n-3) chia hết cho n-3
=>2n-6 chia hết cho n-3 (2)
Từ (1) và (2) => (2n+1) - (2n-6) chia hết cho n-3
=>7 chia hết cho n-3
=> n-3 thuộc Ư(7)
=>n-3 thuộc {1; 7}
=>n thuộc {4; 10}
b)Ta có: n.n+3 chia hết cho n+1 (3)
Mà n+1 chia hết cho n+1
=>n(n+1) chia hết cho n+1
=>n.n +n chia hết cho n+1 (4)
Từ (3) và (4) =>(n.n+n) - (n.n + 3) chia hết cho n+1
=> n-3 chia hết cho n+1 (5)
Mà n+1 chia hết cho n+1 (6)
Từ (5) và (6) =>(n+1) - (n-3) chia hết cho n+1
=> 4 chia hết cho n+1
=>n+1 thuộc Ư(4)
=>n+1 {1;2;4}
=>n thuộc {0; 1; 3}
Nhọc lắm bạn à !
Linh chưa làm được à, căng hè. Trong lớp có ai làm được chưa
\(n+3⋮n\cdot n-7\)
\(\Rightarrow n+3⋮n^2-7\)
\(\Rightarrow(n+3)(n+3)⋮n^2-7\)
\(\Rightarrow n^2+9⋮n^2-7\)
\(\Rightarrow n^2-7-2⋮n^2-7\)
Mà n2 - 7 chia hết cho n2 - 7
=> \(n^2-7\inƯ(2)\)
\(\Rightarrow n^2-7\in\left\{\pm1;\pm2\right\}\)
Lập bảng :
n2 - 7 | 1 | -1 | 2 | -2 |
n | \(\hept{\begin{cases}-\sqrt{8}\\\sqrt{8}\end{cases}}\)\((\)loại\()\) | \(\hept{\begin{cases}-\sqrt{6}\\\sqrt{6}\end{cases}}\)\((\)loại\()\) | \(\left\{3;-3\right\}\)\((\)chọn\()\) | \(\hept{\begin{cases}-\sqrt{5}\\\sqrt{5}\end{cases}}\)\((\)loại\()\) |
Vậy \(n\in\left\{3;-3\right\}\)
c) \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)Vì n nguyên
\(\Rightarrow-5n⋮5\left(đpcm\right)\)
a) \(\left(2n+3\right)^2-9\)
\(=\left(2n+3-3\right)\left(2n+3+3\right)\)
\(=2n\left(2n+6\right)\)
\(=4n\left(n+3\right)\)
Do \(n\in Z\Rightarrow n+3\in Z\)
\(\Rightarrow4n\left(n+3\right)⋮4\left(đpcm\right)\)