cho tam giác ABC vuông tại A,có I là trung điểm AC.Kẻ \(ID\perp BC\).Chứng minh:\(^{AB^2=BD^2-CD^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(BD^2-CD^2=\left(MB^2-MD^2\right)-\left(MC^2-MD^2\right)=MB^2-MC^2=MB^2-MA^2=AB^2\) ( Vì MA = MB)
Vậy \(AB^2=BD^2-CD^2\)
Ta có : 2MC = AC(Vì M là trung điểm của AC)
=> 2MC.AC =AC2
Ta có ; Tam giác MDC đồng dạng tam giác BAC nên
(MC/BC) = (DC/AC)
=> MC.AC = BC.DC
=> 2.MC.AC = 2BC.Dc
=> ac2 = 2BC.DC
=> BC 2 - AC 2 = BC 2 - 2Bc - dc
=> AB2 = BC.(BC - CD - CD ) = Bc . (BD-Dc) = (BD +DC) .(BD - CD)
=> AB2 = BD2 - CD2 (ĐPCM)
Mk ko biết vẽ hình đâu nên mong bạn thứ lỗi
Nối B vs I. Xét tam giác BID vuông tại D, có:
BD2 = BI^2 - ID2 (1).Xét tam giác ICD vuông tại D, có:
DC2 = IC2 - ID2 (2).Từ (1) và (2) =>
=> BD2 - DC2
= BI2 - ID2 - IC2 + ID2
= BI2 - IC2
= BI2 - AI2 (vì AM=CM)
= AB2=> AB2 = BD2 - DC2 (đpcm)
Kẻ \(AH\perp BC\)tại \(H\) thì \(DI//AH\).
Xét \(\Delta HAC\)có:
\(DI//AH\)(chứng minh trên).
\(AI=CI\)(giả thiết).
\(\Rightarrow HD=CD\)\(\left(D\in BC\right)\)(tính chất).
Xét \(\Delta ABC\)vuông tại \(A\)có đường cao \(AH\)\(\left(H\in BC\right)\)(hình vẽ trên).
\(\Rightarrow AB^2=BH.BC\)(hệ thức lượng trong tam giác vuông).
\(\Rightarrow AB^2=\left(BD-DH\right)\left(BD+CD\right)\).
\(\Rightarrow AB^2=\left(BD-CD\right)\left(BD+CD\right)\)(vì \(CD=DH\)).
\(\Rightarrow AB^2=BD^2-CD^2\)(điều phải chứng minh).