\(x\cdot\frac{1}{3}+x\cdot\frac{2}{5}-4=3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( 1/7 . x - 2/7 ) . ( -1.5 . x + 3/5 ) . ( 1/ 3 . x + 4/3) + 0
<=> +) 1/7 . x - 2/7 = 0 +) (- 1 / 5) . x +3/5 = 0 +) 1/ 3 . x + 4/ 3 = 0
x = 2 x = 3 x = 4
Vậy x = 2 : x = 3 ; x=4
a.4^7
b.8^5
c.cho x mk sẻ tính kết quả nhưng tìm xmk ko tính đâu
b) \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=\frac{4^5.\left(1+1+1+1\right)}{3^5.\left(1+1+1\right)}.\frac{6^5.\left(1+1+1+1+1+1\right)}{2^5.\left(1+1\right)}\)
\(=\frac{4^5.4}{3^5.3}.\frac{6^5.6}{2^5.2}=\frac{4^6}{3^6}.\frac{6^6}{2^6}=\frac{2^{12}.2^6.3^6}{3^6.2^6}=2^{12}\)
Ta có: \(2^{12}=\left(2^3\right)^4=8^4\)
Vậy x= 4
1/4.2/6.3/8.4/10.........30/62.31/64=4x
=1/2.1/2.1/2.1/2.............1/2.1/64=4^x
=1/2^30.1/2^6=4^x
=1/2^36=4^x
=1/4^18=4^x
=>x=-18
\(\Rightarrow\frac{3}{4}x+5-\frac{2}{3}x+4-\frac{1}{6}x-1=\frac{1}{3}x+4-\frac{1}{3}+3\)+3
\(\Rightarrow\left(\frac{3}{4}x-\frac{2}{3}x-\frac{1}{6}x\right)+\left(5+4-1\right)=\frac{1}{3}x+\left(4-\frac{1}{3}+3\right)\)
=>\(\frac{-1}{12}x+8=\frac{1}{3}x+\frac{20}{3}\)\(\Rightarrow\frac{-1}{12}x+8-\frac{1}{3}x=\frac{20}{3}\)
\(\Rightarrow\left(\frac{-1}{12}-\frac{1}{3}\right)x+8=\frac{20}{3}\)
\(\Rightarrow\frac{-5}{12}x+8=\frac{20}{3}\Rightarrow\frac{-5}{12}x=\frac{20}{3}-8\)
\(\Rightarrow\frac{-5}{12}x=\frac{-4}{3}\Rightarrow x=\frac{-4}{3}:\frac{-5}{12}=\frac{16}{5}\)
\(\dfrac{1}{4}.\dfrac{2}{6}.\dfrac{3}{8}.\dfrac{4}{10}.\dfrac{5}{12}.....\dfrac{30}{62}.\dfrac{31}{64}=2^x\)
\(\Leftrightarrow\dfrac{1}{2.2}.\dfrac{2}{2.3}.\dfrac{3}{2.4}.\dfrac{4}{2.5}.\dfrac{5}{2.6}.....\dfrac{30}{2.31}.\dfrac{31}{2.32}=2^x\)
\(\Leftrightarrow\dfrac{1.2.3.4.5.....30.31}{2.2.2.3.2.4.2.5.2.6.....2.31.2.32}=2^x\)
\(\Leftrightarrow\dfrac{2.3.4.5.....30.31}{2^{31}.32.\left(2.3.4.5.....31\right)}=2^x\)
\(\Leftrightarrow\dfrac{1}{2^{31}.2^5}=2^x\)
\(\Leftrightarrow\dfrac{1}{2^{36}}=2^x\)
\(\Leftrightarrow2^{-36}=2^x\)
\(\Leftrightarrow x=-36\)
\(a,\frac{2}{3}.\left(3-x\right)+\frac{1}{2}=\frac{3}{4}.\left(2.x+1\right)
\)
\(2-\frac{2}{3}x+\frac{1}{2}=\frac{3}{2}.\frac{3}{4}x+\frac{3}{4}
\)
\(\frac{2}{3}x+2-\frac{1}{2}=\frac{9}{8}x+\frac{3}{4}\)
\(\frac{2}{3}x+\frac{3}{2}=\frac{9}{8}x+\frac{3}{4}\)
\(\frac{3}{2}-\frac{3}{4}=\frac{9}{8}x-\frac{2}{3}x\)
\(\frac{6}{4}-\frac{3}{4}=\frac{27}{24}x-\frac{16}{24}x\)
\(\frac{11}{24}x=\frac{3}{4}\)
\(x=\frac{3}{4}:\frac{11}{24}\)
\(x=\frac{3}{4}.\frac{24}{11}\)
\(x=\frac{18}{11}\)
\(Vậy
x=\frac{18}{11}\)
\(b,\frac{5-x}{3}=\frac{2x+1}{5}\)
\(\frac{\left(5-x\right).5}{15}=\frac{\left(2x+1\right).3}{15}\)
\(\Rightarrow\left(5-x\right).5=\left(2x+1\right).3\)
\(25-5x=6x+3\)
\(25-3=6x+5x\)
\(\Rightarrow11x=22\)
\(\Rightarrow x=22:11\)
\(\Rightarrow x=2\)
\(Vậy
x=2\)
a)\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\Leftrightarrow x\left(x-1\right)^{x+2}\left(x-2\right)=0\)
Do đó \(x\in\left\{0;1;2\right\}\)
b)
\(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot...\cdot\frac{31}{64}=2^x\Leftrightarrow\frac{1\cdot2\cdot3\cdot...\cdot31}{4\cdot6\cdot8\cdot...\cdot64}=2^x\Leftrightarrow\frac{31!}{\left(2\cdot2\right)\cdot\left(2\cdot3\right)\cdot\left(2\cdot4\right)\cdot...\cdot\left(2\cdot31\right)\cdot64}=2^x\)
\(\frac{31!}{2^{30}\cdot31!\cdot2^6}=2^x\Leftrightarrow\frac{1}{2^{36}}=2^x\Leftrightarrow2^{-36}=2^x\Rightarrow x=-36\)
\(x\cdot\frac{1}{3}+x\cdot\frac{2}{5}-4=3\)
\(x\cdot\left(\frac{1}{3}+\frac{2}{5}\right)-4=3\)
\(x\cdot\frac{11}{15}=7\)
\(x=\frac{105}{11}\)
\(x.\frac{1}{3}+x.\frac{2}{5}-4=3\)
\(\Rightarrow x.\left(\frac{1}{3}+\frac{2}{5}\right)=7\)
\(\Rightarrow x.\left(\frac{5}{15}+\frac{6}{15}\right)=7\)
\(\Rightarrow x.\frac{11}{15}=7\Rightarrow x=7:\frac{11}{15}=\frac{105}{11}\)
Vậy x = 105/11