K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2018

Ta có: \(x^2-x+1=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\in R\)

Thấy \(x^8\ge0;x^5< x^8\Rightarrow x^8-x^5\ge0\)

\(\Rightarrow x^8-x^5+x^2-x+1>0\forall x\in R.\)(đpcm) 

24 tháng 7 2018

sai rồi bạn ơi

29 tháng 10 2018

a. Ta có : \(4x^2-6x+9=4x^2-6x+\dfrac{9}{4}+\dfrac{27}{4}\)

\(=\left[\left(2x\right)^2-6x+\left(\dfrac{3}{2}\right)^2\right]+\dfrac{27}{4}\)

\(=\left(2x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\)

\(\left(2x-\dfrac{3}{2}\right)^2\ge0\forall x\)

nên \(\left(2x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}>0\forall x\)

b.Ta có : \(x^2+2y^2-2xy+y+1=\left(x^2+y^2-2xy\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

\(=\left(x-y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x-y\right)^2\ge0\forall x;y\)

\(\left(y+\dfrac{1}{2}\right)^2\ge0\forall y\)

nên \(\left(x-y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\forall x;y\)

NV
23 tháng 2 2021

\(VT=\left(x^8-x^5+\dfrac{x^2}{4}\right)+\left(\dfrac{3}{4}x^2-x+\dfrac{1}{3}\right)+\dfrac{2}{3}\)

\(VT=\left(x^4-\dfrac{x}{2}\right)^2+\dfrac{3}{4}\left(x-\dfrac{2}{3}\right)^2+\dfrac{2}{3}>0\) (đpcm)

3 tháng 8 2017

\(x-x^2-1\\ =-\left(x^2-x+1\right)\\ =-\left(x^2-x+\dfrac{1}{4}+\dfrac{3}{4}\right)\\ =-\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\\ \left(x-\dfrac{1}{2}\right)^2\ge0\forall x\in R\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\in R\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\in R\\ \Rightarrow-\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]< 0\forall x\in R\\ \Leftrightarrow x-x^2-1< 0\forall x\in R\)

Vậy \(x-x^2-1< 0\forall x\in R\)

3 tháng 8 2017

Ta có: \(x-x^2-1\)

\(=-\left(x^2-x+1\right)\)

\(=-\left(x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\right)\)

\(=-\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\)

\(=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\)

\(-\left(x-\dfrac{1}{2}\right)^2\le0\forall x\in R\)

\(\Rightarrow-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le\dfrac{-3}{4}< 0\forall x\in R\)

-> ĐPCM.

15 tháng 8 2015

\(VT=\frac{x^{10}+x^5+1}{x^2+x+1}=\frac{\left(x^5+\frac{1}{2}\right)^2+\frac{3}{4}}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}>0\)

Nguồn: diendantoanhoc.net

P/s. Bài này không làm theo kiểu xét từng khoảng được, có lẽ từ đầu người ra đề đã nghĩ theo hướng ở trên. Nếu xét từng khoảng thì khá khó ở khoảng \(\left(-1;0\right)\)

3 tháng 11 2016

Ta có: \(x-x^2-1=-\left(x^2-x+\frac{1}{4}\right)-\frac{3}{4}=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}< 0\)

Dấu "=" chỉ xảy ra khi:\(\left(x-\frac{1}{2}\right)^2=0\Rightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)

Vậy giá trị trên < 0 với mọi số thực x

24 tháng 9 2017

\(x^2+y^2-x-y+1=\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)+\frac{1}{2}\)

\(=\left(x^2-2.x.\frac{1}{x}+\frac{1}{2^2}\right)+\left(y^2-2.x.\frac{1}{2}+\frac{1}{2^2}\right)+\frac{1}{2}\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{1}{2}>0\)(đúng \(\forall x;y\in R\))

5 tháng 9 2017

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

5 tháng 9 2017

. Huhu T^T mong sẽ có ai đó giúp mình "((

30 tháng 9 2020

hơi ngán dạng này :((((

a, \(x^2-3x+5=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+5=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\forall x\)

b,

\(x^2-\frac{1}{3}x+\frac{5}{4}=x^2-2.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{5}{4}=\left(x-\frac{1}{6}\right)^2+\frac{11}{9}>0\forall x\)

c,

\(x-x^2-3=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{1}{4}-3=-\left(x-\frac{1}{2}\right)^2-\frac{11}{4}< 0\forall x\)d,

\(x-2x^2-\frac{5}{2}=-2\left(x^2-\frac{1}{2}x+\frac{5}{4}\right)=-2\left(x^2-2.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}+\frac{5}{4}\right)=-2\left[\left(x-\frac{1}{4}\right)^2+\frac{19}{16}\right]=-2\left(x-\frac{1}{4}\right)^2-\frac{19}{8}< 0\forall x\)P/s : ko chắc lém :)))

2 tháng 10 2020

cảm ơn bạn nhìuuu 💞