K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2021

bạn tham khảo ở đây nha,mình từng giải rồi

https://hoc24.vn/cau-hoi/cho-duong-tron-o-duong-kinh-ab-tren-tiep-tuyen-tai-a-cua-duong-trong-o-lay-diem-c-ve-tuyep-tuyen-cn-va-cat-tuyen-cde-tia-cd-nam-giua-2-tai-ca-co-de-thuoc-duong-tron-o-d-nam-giua-c-va-e.1081799079177

25 tháng 6 2021

thankkkkkkkkkkkkkkk

21 tháng 6 2021

a) Vì CA là tiếp tuyến \(\Rightarrow\angle CAD=\angle CEA\) (góc tạo bởi tiếp tuyến và dây cung bằng góc nội tiếp chắn cung đó)

Xét \(\Delta CAD\) và \(\Delta CEA:\) Ta có: \(\left\{{}\begin{matrix}\angle CAD=\angle CEA\\\angle ACEchung\end{matrix}\right.\)

\(\Rightarrow\Delta CAD\sim\Delta CEA\left(g-g\right)\Rightarrow\dfrac{CA}{CE}=\dfrac{CD}{CA}\Rightarrow CA^2=CD.CE\)

mà \(CH.CO=CA^2\) (hệ thức lượng) \(\Rightarrow CD.CE=CH.CO\)

c) Vì AB là đường kính \(\Rightarrow\angle ADB=90\)

Vì CA,CN là tiếp tuyến \(\Rightarrow\Delta CAN\) cân tại C có CO là phân giác \(\angle ACN\)

\(\Rightarrow CO\bot AN\Rightarrow\angle AHM=90\)

\(\Rightarrow\angle AHM=\angle ADM=90\Rightarrow ADHM\) nội tiếp

Ta có: \(\angle EAF=\angle DAE-\angle DAF=180-\angle DBE-\angle CHD\) (ADHM,ADBE nội tiếp)

Ta có: \(CD.CE=CH.CO\Rightarrow\dfrac{CD}{CO}=\dfrac{CH}{CE}\)

Xét \(\Delta CHD\) và \(\Delta CEO:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{CD}{CO}=\dfrac{CH}{CE}\\\angle OCEchung\end{matrix}\right.\)

\(\Rightarrow\Delta CHD\sim\Delta CEO\left(c-g-c\right)\Rightarrow\angle CHD=\angle CEO\Rightarrow DHOE\) nội tiếp 

\(\Rightarrow\angle CHD=\angle CEO=\angle DEO=\dfrac{180-\angle DOE}{2}=90-\dfrac{1}{2}\angle DOE\)

\(=90-\angle DBE\Rightarrow\angle EAF=180-\angle DBE-\left(90-\angle DBE\right)=90\)

\(\Rightarrow EF\) là đường kính \(\Rightarrow E,O,F\) thẳng hàng

undefined

  

24 tháng 3 2022

Đoạn cuối bị ngộ nhận góc EBF = 90 độ rồi bạn ơi;-;

a: góc ADB=1/2*sđ cung AB=90 độ

góc ADM=góc AHM=90 độ

=>ADHM nội tiếp

b: Xét ΔCAD và ΔCEA có

góc CAD=góc CEA

góc ACD chung

=>ΔCAD đồng dạng với ΔCEA

=>CA/CE=CD/CA

=>CA^2=CE*CD

ΔCAO vuông tại A có AH là đường cao

nên CH*CO=CA^2

=>CD*CE=CH*CO

Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC
mà OB=OC
nên OA là trung trực của BC

=>OA vuông góc BC tại H

=>AH*AO=AB^2

Xet ΔABD và ΔAEB có

góc ABD=góc AEB

góc BAD chung

=>ΔABD đồng dạng với ΔAEB

=>AB^2=AD*AE=AH*AO

=>AD/AO=AH/AE

=>ΔADH đồng dạng với ΔAOE
=>góc ADH=góc AOE

=>góc DHO+góc DEO=180 độ

=>DEOH nội tiếp

=>góc EHO=góc EDO

1:

Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

=>AM vuông góc BC tại M

ΔCAB vuông tại A có AM là đường cao

nên CA^2=CM*CB

2:

D,M,B,E cùng thuộc (O)

=>DMBE nội tiếp

=>góc MDE+góc MBE=180 độ

=>góc CDM=góc CBE

Xét ΔCDM và ΔCBE có

góc CDM=góc CBE

góc DCM chung

Do đó: ΔCDM đồng dạng với ΔCBE

=>CD/CB=CM/CE

=>CD*CE=CM*CB

3: ΔOAK cân tại O

mà OH là đường cao

nên OH là phân giác của góc AOK

Xét ΔCAO và ΔCKO có

OA=OK

góc COA=góc KOC

OC chung

Do đó: ΔCAO=ΔCKO

=>góc CKO=90 độ

=>CK là tiếp tuyến của (O)

a) Xét tứ giác ABOC có 

\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối

\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)