1) Cho a/b=c/d. CMR: a)2a+c/2b+d=a/b
b) a.(2b+3d)=b.(2a+3c)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\left(a+c\right)\cdot\left(b-d\right)=\left(bk+dk\right)\left(b-d\right)=k\left(b^2-d^2\right)\)
\(\left(a-c\right)\left(b+d\right)=\left(bk-dk\right)\left(b+d\right)=k\left(b^2-d^2\right)\)
Do đó: \(\left(a+c\right)\left(b-d\right)=\left(a-c\right)\left(b+d\right)\)
b: \(\left(2a+3c\right)\left(2b-3d\right)=\left(2bk+3dk\right)\left(2b-3d\right)=k\left(4b^2-9d^2\right)\)
\(\left(2a-3c\right)\left(2b+3d\right)=\left(2bk-3dk\right)\left(2b+3d\right)=k\left(4b^2-9d^2\right)\)
Do đó: \(\left(2a+3c\right)\left(2b-3d\right)=\left(2a-3c\right)\left(2b+3d\right)\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Khi đó:
\(\frac{2a-3c}{2b-3d}=\frac{2bk-3dk}{2b-3d}=\frac{k\left(2b-3d\right)}{2b-3d}=k\)
\(\frac{2a+3c}{2a+3d}=\frac{2bk+3dk}{2a+3d}=\frac{k\left(2a+3d\right)}{2a+3d}=k\)
Vậy \(\frac{2a-3c}{2b-3d}=\frac{2a+3c}{2a+3d}=k\)
Ta có đpcm
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{2a}{2b}=\dfrac{3c}{3d}=\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
\(\Rightarrow\dfrac{2a+3c}{2a-3c}=\dfrac{2b+3d}{2b-3d}\)
\(\Rightarrow dpcm\)
đặt a/b =c/d =k
=> a=bm , c=dm
=> 2a+3c/2b+3d =2bm+3bm/ 2b +3d = m.(2d+3d)/2d+3d =m (1)
=> 2a-3c/2d-3d=2bm-3dm /2b -3d =m.(2b-3d)/2b-3d= m (2)
Từ (1) và (2) => 2a+3c/2b+3d =2a-3c/2b-3d
câu 2 tương tự nha
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{2A+3C}{2B+3D}=\frac{2A-3C}{2B-3D}=\frac{2A+3C+2A-3C}{2B+3D+2B-3D}=\frac{4A}{4B}=\frac{A}{B}\left(1\right)\)\(\frac{2A+3C}{2B+3D}=\frac{2A-3C}{2B-3D}=\frac{2A+3C-2A+3C}{2B+3D-2B+3D}=\frac{6C}{6D}=\frac{C}{D}\left(2\right)\)
Từ (1) và (2) suy ra : \(\frac{A}{B}=\frac{C}{D}\)
Giải :
Từ đảng thức : \(\frac{2a+3c}{2b+3d}=\frac{2a-3c}{2b-3d}\)
\(\Rightarrow\left(2a+3c\right).\left(2b-3d\right)=\left(2b+3d\right).\left(2a-3c\right)\)
\(\Rightarrow4ab-6ad+6bc-9cd=4ab-6bc+6ad-9cd\)
\(\Rightarrow\left(4ab-6ad+6bc-9cd\right)-\left(4ab-6bc+6ad-9cd\right)=0\)
\(\Rightarrow4ab-6ad+6bc-9cd-4ab+6bc-6ad+9cd=0\)
\(\Rightarrow\left(4ab-4ab\right)-\left(6ad+6ad\right)+\left(6bc+6bc\right)-\left(9cd-9cd\right)=0\)
\(\Rightarrow-12ad+12bc=0\)
\(\Rightarrow12bc=12ad\)
\(\Rightarrow bc=ad\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(\text{đpcm}\right)\)
Cho a/b=c/d Với b/d khác +-3/2 . Chứng minh rằng:
a)2a+3c/2b+3d=2a-3c/2b-3d.
b)a^2+c^2/b^2+d^2=ac/bd
Bài 1:
a) ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{2a}{2b}=\frac{c}{d}=\frac{2a+c}{2b+d}\) ( tính chất dãy tỉ số bằng nhau)
\(\Rightarrow\frac{a}{b}=\frac{2a+c}{2b+d}\left(đpcm\right)\)
b) ta có: \(\frac{a}{b}=\frac{2a+c}{2b+d}\left(pa\right)\)
\(\Rightarrow a.\left(2b+d\right)=b.\left(2a+c\right)\left(đpcm\right)\)
Bạn Công Chúa Ori ơi ! Câu b sai rồi ( nhầm đề) . Theo mình là như này
b) Ta có \(\frac{a}{b}\)=\(\frac{c}{d}\)=\(\frac{2a}{2c}\)=\(\frac{3c}{3d}\)=\(\frac{2a+3c}{2b+3d}\)
suy ra \(\frac{a}{b}\)=\(\frac{2a+3c}{2b+3d}\)
suy ra a.(2b+3d)=b.(2a+3c)