tìm giá trị nhỏ nhất của BT :
A=I 3x - 4 I -1 B=I x+10 I -2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Gọi Bmin là GTNN của B
Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)
=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).
=> Bmin = 0.
Vậy GTNN của B = 0.
2/ Gọi Dmin là GTNN của D.
Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)
và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> Dmin = 0.
=> \(\left|x-2\right|+\left|x-8\right|=0\)
=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)
Vậy không có x thoả mãn đk khi GTNN của D = 3.
b,xy+3x-y=6
(xy+3x)-(y+3)=3 0,5
x(y+3)-(y+3) =3
(x-1)(y+3)=3=3.1=-3.(-1) 0,5
Có 4 trường hợp xảy ra :
; ; ;
Từ đó ta tìm được 4 cặp số x; y thoả mãn là :
(x=4;y=-2) ; (x=2;y=0) ; (x=-2;y=-4) ; (x=0; y=-6) 1.0
phần a khó quá
a) |x+1/2| +3/4 nhỏ nhất
=> |x+1/2| nhỏ nhất
=> |x+1/2|= 0
=> |x+1/2|+3/4 = 0+3/4 = 3/4
b) |2x+2| - 1 nhỏ nhất
<=> |2x+2| nhỏ nhất
<=> |2x + 2| = 0
2x + 2 = 0
2x = 0 - 2 = -2
x = (-2) : 2 = -1
a)\(\left|x+\frac{1}{2}\right|+\frac{3}{4}\)
\(\left|x+\frac{1}{2}\right|\ge0\Rightarrow\left|x+\frac{1}{2}\right|+\frac{3}{4}\ge\frac{3}{4}\)
Vậy GTNN của |x+1/2|+3/4 là 3/4
khi\(\left|x+\frac{1}{2}\right|=0\Rightarrow x+\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
b)\(\left|2x+2\right|\ge0\Rightarrow\left|2x+2\right|-1\ge-1\)
Vậy GTNN của |2x+2|-1 là -1
khi\(\left|2x+2\right|=0\Leftrightarrow2x+2=0\Rightarrow2x=-2\Rightarrow x=-1\)
c)câu c) là sao vậy???
a, vì (x-1)^2 >/ 0 với mọi x
(y-1)^2 >/ 0 với mọi y
=>(x-1)^2+(y-1)^2 >/ 0 với mọi x,y
=>(x-1)^2+(y-1)^2+3 >/ 3
Do đó Amax=3
Dấu "=" xảy ra<=>(x-1)^2=0<=>x=1
(y-1)^2 =0<=>y=1
\(A=\left|3x-4\right|-1\)
có :
\(\left|3x-4\right|\ge0\)
\(\Rightarrow\left|3x-4\right|-1\ge0+1\)
\(\Rightarrow\left|3x-4\right|-1\ge-1\)
dấu "=" xảy ra khi |3x - 4| = 0
=> 3x - 4 = 0
=> 3x = 4
=> x = 4/3
1,
Ta có: \(|3x-4|\ge0\forall x\)
\(\Rightarrow|3x-4|-1\ge0-1\)
\(\Rightarrow A\ge-1\)
\(\Rightarrow GTNN\)của A=-1
\(\Leftrightarrow|3x-4|=0\)
\(\Leftrightarrow3x-4=0\)
\(\Leftrightarrow3x=4\)
\(\Leftrightarrow x=\frac{4}{3}\)
Vậy \(x=\frac{4}{3}\)thì GTNN của A=-1
2,
Ta có: \(|x+10|\ge0\forall x\)
\(\Leftrightarrow|x+10|-2\ge0-2\)
\(\Leftrightarrow B\ge-2\)
\(\Leftrightarrow GTNN\)của B=-2
GTNN của B=-2
\(\Leftrightarrow|x+10|=0\)
\(\Leftrightarrow x+10=0\)
\(\Leftrightarrow x=-10\)
Vậy x=-10 thì GTNN của B=-2