Phân tích thành nhân tử ( bằng kĩ thuật đặt thừa số chung ) :
a ( x - 1 ) + b ( 1 - x )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
x5-x4-1=x5-x3-x2-x4+x2+x+x3-x-1
=x2.(x3-x-1)-x.(x3-x-1)+(x3-x-1)
=(x3-x-1)(x2-x+1)
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
= (-2a ^2 +4a)(1-x)
= -2 (a^2 -2a)(1-x)
= -2a(a-2)(1-x)
= 2a(a-2)(x-1)
\(-2a^2\left(x-1\right)+4a\left(1-x\right)\)
\(=-a\cdot2a\left(x-1\right)-2\cdot2a\left(x-1\right)\)
\(=2a\left(x-1\right)\left(-a-2\right)\)
\(7xy^5\left(x-1\right)-3x^2y^4\left(1-x\right)+5xy^3\left(x-1\right)\)
\(=7xy^5\left(x-1\right)+3x^2y^4\left(x-1\right)+6xy^3\left(x-1\right)\)
\(=\left(x-1\right)\left(7xy^5+3x^2y^4-6xy^3\right)=xy\left(x-1\right)\left(7y^4+3xy^3-6y^2\right)\)
\(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\)
\(=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)\)
\(=\left(x+1\right)\left(-2x^2+3x+7\right)\)
x2 + x -12 = x2 + 4x - 3x - 12 = x(x+4) - 3(x+4) = (x+4)(x-3)
\(x^2+x-12\)
\(=x^2+x+\frac{1}{4}-\frac{49}{4}\)
\(=\left(x+\frac{1}{2}\right)^2-\left(\frac{7}{2}\right)^2\)
\(=\left(x+\frac{1}{2}-\frac{7}{2}\right)\left(x+\frac{1}{2}+\frac{7}{2}\right)\)
\(=\left(x-3\right)\left(x+4\right)\)
\(3,\)Nhẩm nghiệm của đa thức trên ta đc : -1
Ta có lược đồ sau :
1 | 1 | -4 | -4 | |
-1 | 1 | 0 | -4 | 0 |
Phân tích thành nhân tử ta có :\(\left(x+1\right)\left(x^2-4\right)\)
\(a\left(x-1\right)+b\left(1-x\right)=a\left(x-1\right)-b\left(x-1\right)=\left(x-1\right)\left(a-b\right)\)
a) ( x + 1) + b ( 1 - x )
= ( x + 1 ) - b( x- 1 )
= ( 1 - b )( x- 1 )
****