K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2018

a,\(\sqrt{x^2-3}\le x^2-3\)

\(\Leftrightarrow x^2-3\le x^4-6x^2+9\)

\(\Leftrightarrow x^4-6x^2-x^2+12\ge0\)

\(\Leftrightarrow x^4-7x^2+12\ge0\)

\(\Leftrightarrow x^4-\frac{2.7}{2}.x^2+\frac{49}{4}-\frac{1}{4}\ge0\)

\(\Leftrightarrow\left(x^2-\frac{7}{2}\right)^2\ge\frac{1}{4}\)

\(\Leftrightarrow x^2-\frac{7}{2}\ge\frac{1}{2}\Leftrightarrow x^2\ge4\)

\(\Leftrightarrow x\le-2\)và \(x\ge2\)

KL:

b,\(\sqrt{x^2-6x+9}>x-6\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}>x-6\)

\(\Leftrightarrow|x-3|>x-6\)

Với x\(\ge\)3  phương trình   <=>x-3>x-6  (luôn đúng)

Với x<3 phương trình <=> 3-x>x-6  <=>x<9/2 <=>x<4,5

KL:

21 tháng 8 2019

\(\text{a) ĐKXĐ: }x\ge\sqrt{3}\)

        \(\sqrt{x^2-3}\le x^2-3\)

\(\Leftrightarrow\left(\sqrt{x^2-3}\right)^2\le\left(x^2-3\right)^2\)

\(\Leftrightarrow x^2-3\le x^4-6x^2+9\)

\(\Leftrightarrow x^2-3-x^4+6x^2-9\le0\)

\(\Leftrightarrow-x^4+7x^2-12\le0\)

\(\Leftrightarrow-x^2+4x^2+3x^2-12\le0\)

\(\Leftrightarrow\left(-x^4+4x^2\right)+\left(3x^2-12\right)\le0\)

\(\Leftrightarrow-x^2\left(x^2-4\right)+3\left(x^2-4\right)\le0\)

\(\Leftrightarrow\left(x^2-4\right)\left(3-x^2\right)\le0\)

\(\text{Đến đây EZ rồi}\)

9 tháng 6 2019

a) ĐKXĐ : \(\orbr{\begin{cases}x\ge\sqrt{3}\\x\le-\sqrt{3}\end{cases}}\)

\(\sqrt{x^2-3}=x^2-3\)

\(\Leftrightarrow\sqrt{x^2-3}=\sqrt{x^2-3}\cdot\sqrt{x^2-3}\)

\(\Leftrightarrow\sqrt{x^2-3}-\sqrt{x^2-3}\cdot\sqrt{x^2-3}=0\)

\(\Leftrightarrow\sqrt{x^2-3}\left(1-\sqrt{x^2-3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-3}=0\\\sqrt{x^2-3}=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-3=0\\x^2-3=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x\in\left\{\pm\sqrt{3}\right\}\\x\in\left\{\pm2\right\}\end{cases}}\)( thỏa mãn )

b) ĐKXĐ : \(x\le6\)

\(\sqrt{x^2-6x+9}=6-x\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=6-x\)

\(\Leftrightarrow\left|x-3\right|=6-x\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=6-x\\x-3=x-6\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x=9\\0x=-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{2}\\x\in\varnothing\end{cases}}\)( thỏa mãn )

10 tháng 10 2019

Q= \(\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)+\(\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)\(\frac{2\sqrt{x}-9-\left(x-9\right)+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)=\(\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)=\(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

b) Q <1 <=> \(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}< 1< =>1+\frac{4}{\sqrt{x}-3}\)<1 <=> \(\frac{4}{\sqrt{x}-3}< 0\) <=> \(\sqrt{x}-3< 0< =>\sqrt{x}< 3\)<=> \(0\le\)x< 9

c) Q = 1 \(+\frac{4}{\sqrt{x}-3}\) là số nguyên khi 4 chia hết cho\(\sqrt{x}-3\) <=> \(\sqrt{x}-3=1;\sqrt{x}-3=-1;\sqrt{x}-3=2\);\(\sqrt{x}-3=-2;\sqrt{x}-3=4;\sqrt{x}-3=-4\)

<=> x= 16; x = 4; x = 25; x = 1 ; x = 49

10 tháng 10 2019

Bài làm của bạn Mạnh có hai lỗi:

+) ĐKXĐ: \(\hept{\begin{cases}x-5\sqrt{x}+6\ne0;\sqrt{x}-2\ne0;3-\sqrt{x}\ne0\\x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4;9\end{cases}}\)

+) Vì ko có điều kiện nên câu c chưa loại nghiệm. x = 4 loại nhé

12 tháng 7 2017

ĐK  \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

a, \(R=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\frac{3x-6\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)

b. \(R< -1\Rightarrow R+1< 0\Rightarrow\frac{3\sqrt{x}-9+\sqrt{x}+3}{\sqrt{x}+3}< 0\Rightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\)

\(\Rightarrow0\le x< \frac{9}{4}\)

c. \(R=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}=3+\frac{-18}{\sqrt{x}+3}\)

Ta thấy \(\sqrt{x}+3\ge3\Rightarrow\frac{-18}{\sqrt{x}+3}\ge-6\Rightarrow3+\frac{-18}{\sqrt{x}+3}\ge-3\Rightarrow R\ge-3\)

Vậy \(MinR=-3\Leftrightarrow x=0\)