Cho a/b=c/a.(a,b,c khác 0).Chứng minh b^2-c^2/a^2+c^2=b-c/c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho c^2 +2(ab -ac -bc ) =0 và b khác c, a+b khác 0. Chứng minh a^2 +(a-c)^2 /b^2+(b-c)^2 = a-c / b-c
\(a^2+b^2+c^2+2ab-2ac-2bc=a^2+b^2\)
\(\Rightarrow\left(a+b-c\right)^2=a^2+b^2\)
\(\Rightarrow\hept{\begin{cases}a^2=\left(a+b-c\right)^2-b^2=\left(a+b-c-b\right)\left(a+b-c+b\right)=\left(a-c\right)\left(a+2b-c\right)\\b^2=\left(a+b-c\right)^2-a^2=\left(a+b-c-a\right)\left(a+b-c+a\right)=\left(b-c\right)\left(2a+b-c\right)\end{cases}}\)
\(a^2+\left(a-c\right)^2=\left(a-c\right)\left(a+2b-c\right)+\left(a-c\right)^2\)
\(=\left(a-c\right)\left(a+2b-c+a-c\right)=2\left(a-c\right)\left(a+b-c\right)\)
\(b^2+\left(b-c\right)^2=\left(b-c\right)\left(2a+b-c\right)+\left(b-c\right)^2\)
\(=\left(b-c\right)\left(2a+b-c+b-c\right)=2\left(b-c\right)\left(a+b-c\right)\)
Vậy \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{2\left(a-c\right)\left(a+b+c\right)}{2\left(b-c\right)\left(a+b+c\right)}=\frac{a-c}{b-c}\)
Ta có:\(\frac{a}{b}=\frac{b}{c}\Leftrightarrow b^2=ac\)
Nên:\(\frac{a^2+b^2}{c^2+b^2}=\frac{a^2+ac}{c^2+ac}=\frac{a\left(a+c\right)}{c\left(a+c\right)}=\frac{a}{c}\)
a/b = c/a => \(a^2=bc\)
=> bc + c^2 - a^2 -c^2 =0
<=> c(b+c) = a^2 +c^2
<=> (b-c)(b+c)c = (b-c)(a^2+c^2)
=> \(\frac{\left(b-c\left(b+c\right)\right)}{a^2+c^2}=\frac{b-c}{c}\)
=> đpcm
Từ \(\frac{a}{b}=\frac{c}{a}\Rightarrow a^2=bc\)
\(\Rightarrow\frac{b^2-c^2}{a^2+c^2}=\frac{b^2-c^2}{bc+c^2}=\frac{\left(b-c\right)\left(b+c\right)}{c\left(b+c\right)}=\frac{b-c}{c}\)
\(\RightarrowĐPCM\)