K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

Ta có: 2xy + x - 2y = 4

=> 2y(x - 1) + x = 4

=> 2y(x - 1) + x - 1 = 3

=> 2y(x - 1) + (x - 1) = 3

=>  (x - 1).(2y + 1) = 3

=> x-1 và 2y+1 là Ư(3)={-3;-1;1;3}

Ta có bảng:

x - 1-1-313
2y + 1-3- 131
x0-224
y-2-110
21 tháng 7 2018

x(2y+1)-(2y+1)= 4-1

(x-1)(2y+1)=3

Bạn tự làm tiếp nhé.

28 tháng 6 2020

Ta có :

2xy + x - 2y = 4

\(\Rightarrow\) 2y ( x - 1 ) + x = 4

\(\Rightarrow\) 2y ( x - 1 ) + x - 1 = 3

\(\Rightarrow\) 2y ( x - 1 ) + ( x - 1 ) = 3

\(\Rightarrow\) ( x - 1 ) . ( 2y + 1 ) = 3

\(\Rightarrow\) x - 1 và 2y + 1 là Ư(3) = { - 3 ; - 1 ; 1 ; 3 }

Ta có bảng :

   x - 1      - 1       -  3       1         3    
  2y + 1  - 3   - 1    3   1
     x   0   - 2    2   4
    y  - 2   - 1   1   0

Vậy ...

28 tháng 6 2020

2xy+x-2y=4

x(2y+1)-2y=4

x(2y+1)-2y-1=3

x(2y+1)-(2y+1)=3

(x-1)(2y+1)=3

Vì x;y là số nguyên => x-1;2y+1 là số nguyên

                               => x-1;2y+1  \in Ư(3)

Ta có bảng:

x-113-3-1
2y+131-1-3
x24-20
y10-1-2

Vậy cặp số nguyên (x;y) cần tìm là: (2;1) ; (4;0) ; (-2;-1) ; (0;-2).

13 tháng 5 2021

2x2+y26x+2xy2y+5=02x2+y2−6x+2xy−2y+5=0

(x24x+4)+(x2+2xy+y2)(2x+2y)+1=0⇔(x2−4x+4)+(x2+2xy+y2)−(2x+2y)+1=0

(x2)2+(x+y)22(x+y)+1=0⇔(x−2)2+(x+y)2−2(x+y)+1=0

(x2)2+(x+y

13 tháng 5 2021

MÁY TÔI LỖI ,SORRY

2x2+y26x+2xy2y+5=02x2+y2−6x+2xy−2y+5=0

(x24x+4)+(x2+2xy+y2)(2x+2y)+1=0⇔(x2−4x+4)+(x2+2xy+y2)−(2x+2y)+1=0

(x2)2+(x+y)22(x+y)+1=0⇔(x−2)2+(x+y)2−2(x+y)+1=0

(x2)2+(x+y

13 tháng 5 2021

x+2xy+2y+6=0

x . (1 + 2y) + 2y + 6 = 0

x . (1 + 2y) + 2y + 1 = 5

(1 + 2y) . (x + 1) = 5

Phần còn lại làm đc nốt chưa

3 tháng 2 2017

\(\Rightarrow x\left(2y+1\right)-\left(2y+1\right)+1=4+1=5\)

...... tự lm

11 tháng 12 2021

\(\Rightarrow2x-4xy+2y=0\\ \Rightarrow2x\left(1-2y\right)+2y-1=-1\\ \Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\\ \Rightarrow\left(2x-1\right)\left(2y-1\right)=1=1.1=\left(-1\right)\left(-1\right)\)

Với \(\left\{{}\begin{matrix}2x-1=1\\2y-1=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\rightarrow\left(1;1\right)\)

Với \(\left\{{}\begin{matrix}2x-1=-1\\2y-1=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\rightarrow\left(0;0\right)\)

Vậy các cặp \(\left(x;y\right)\) cần tìm là \(\left(1;1\right);\left(0;0\right)\)

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Lời giải:

Đặt $x+y=a; 3x+2y=b$ với $a,b\in\mathbb{Z}$ thì pt trở thành:

$ab^2=b-a-1$

$\Leftrightarrow ab^2+a+1-b=0$

$\Leftrightarrow a(b^2+1)+(1-b)=0$

$\Leftrightarrow a=\frac{b-1}{b^2+1}$

Để $a$ nguyên thì $b-1\vdots b^2+1$

$\Rightarrow b^2-b\vdots b^2+1$

$\Rightarrow (b^2+1)-(b+1)\vdots b^2+1$

$\Rightarrow b+1\vdots b^2+1$

Kết hợp với $b-1\vdots b^2+1$

$\Rightarrow (b+1)-(b-1)\vdots b^2+1$

$\Rightarrow 2\vdots b^2+1$
Vì $b^2+1\geq 1$ nên $b^2+1=1$ hoặc $b^2+1=2$
Nếu $b^2+1=1\Rightarrow b=0$. Khi đó $a=\frac{b-1}{b^2+1}=-1$
Vậy $x+y=-1; 3x+2y=0\Rightarrow x=2; y=-3$ (tm) 

Nếu $b^2+1=2\Rightarrow b=\pm 1$
Với $b=1$ thì $a=\frac{b-1}{b^2+1}=0$

Vậy $x+y=0; 3x+2y=1\Rightarrow x=1; y=-1$ (tm)

Với $b=-1$ thì $a=-1$

Vậy $x+y=-1; 3x+2y=-1\Rightarrow x=1; y=-2$ (tm)