K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2021

Trong toán học, bất đẳng thức AM-GM là bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm. Tên gọi đúng của bất đẳng thức này là bất đẳng thức AM-GM. Bất đẳng thức AM-GM là một bất đẳng thức cơ bản kinh điển quan trọng nhất của toán học sơ cấp, vì nó đã có khá nhiều cách chứng minh được đưa ra, hàng chục mở rộng, hàng chục kết quả chặt hơn đăng trên các diễn đàn toán học. Phần này tôi xin giới thiệu một kết quả chặt hơn bất đẳng thức AM-GM khác được suy ra từ chính cách chứng minh mới bất đẳng thức AM-GM (Cauchy - Cô-si).

                                                                                                                                                          # Aeri # 

24 tháng 6 2021

Thanks bạn

15 tháng 10 2015

mình copy trên google nè:Bất đẳng thức này ở VN gọi là bđt Cô-si (Cauchy) còn ở Mỹ gọi như trong tựa bài, hay gọi tắt là AM-GM inequality (arithmetic mean - geometric mean)

12 tháng 4 2018

phải

12 tháng 4 2018

Hỏi làm gì lớp 9 học

23 tháng 6 2017

C-S với Bunhia là 1 và là 1 trg hợp của Holder dạng 2 số \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)

AM-GM ng` việt gọi là cô si dạng 2 số \(a^2+b^2\ge2ab\)

Mincopski dạng 2 số \(\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\ge\sqrt{\left(a+x\right)^2+\left(b+y\right)^2}\)

23 tháng 6 2017

* BĐT Cauchy - Schwars = BĐT Bunhiacopxki

- Thông thường :

( a2 + b2 )(c2 + d2 ) \(\ge\left(ac+bd\right)^2\)

Dấu "=" xảy ra tại : \(\dfrac{a}{c}=\dfrac{b}{d}\)

- Tổng quát với các bộ số : a1 , a2 , a3 , ... , an và : b1 , b2 , ... , bn

(a12 + a22 + ... + an2)(b12 + b22 + ... + bn2 ) \(\ge\left(a_1b_1+a_2b_2+...+a_nb_n\right)\)

Dấu "=" xảy ra tại : \(\dfrac{a_1}{b_1}=\dfrac{a_2}{b_2}=...=\dfrac{a_n}{b_n}\)

* BĐT AM-GM

- trung bình nhân (2 số)

với a,b \(\ge0\) , ta luôn có : \(\dfrac{a+b}{2}\ge\sqrt{ab}\) . Dấu "=" xảy ra tại a=b

- Trung bình nhân ( n số )

Với x1 , x1 , x3 ,..., xn \(\ge0\)

Ta luôn có : \(\dfrac{x_1+x_2+...+x_n}{n}\ge\sqrt[n]{x_1x_2.....x_n}\)

Dấu "=" xảy ra khi x1 = x2 =...=xn

-Trung bình hệ số :

Với các bộ số : x1 , x1 , x3 ,..., xn \(\ge0\)và a1, a2 , a3 ,... , an ( a1 , a2 ,..., an) là c1ác hệ số

Ta có : \(\dfrac{a_1x_1+a_2x_2+...+a_nx_n}{a}\ge\sqrt[a]{x_1^{a_1}.x_2^{a_2}.....x_n^{a_n}}\)

Dấu "=" xảy ra khi x1 = x2 = xn

=================

Cái mincopxki t ko biết , ngoài ra còng có BĐT Cauchy - dạng engel => lên googl seach có

8 tháng 2 2019

Bạn vào link sau tham khảo :

Bất đẳng thức trung bình cộng và trung bình nhân – Wikipedia tiếng Việt

Hk tốt 

.

 AM-GM là viết tắt của từ arithme and geometric means, nghĩa là trung bình cộng và trung bình nhân, bất đẳng thức AM-GM được phát biểu như sau: 
(a1 + a2 + a3 + ...... + an) / n = căn bậc n của (a1*a2*a3*….*an) 

Cách chứng minh hay nhất của nó là sử dụng phương pháp quy nạp Cô-si nên nhiều người lầm tưởng rằng Cô-si phát hiện ra bđt này. Tên gọi bđt Cô-si được sử dụng trong hầu hết các tài liệu của VN, sai nhiều quá, thâm niên nên không sửa được, vì vậy chúng ta vẫn quen gọi nó là bđt Cô-si theo như sgk. Tên gọi bđt AM-GM là tên gọi chuẩn được quốc tế sử dụng. 

Cũng giống như vậy, bđt ta hay gọi là Bunhiacovski là phát minh của 3 nhà toán học Schwart (Svác), Bunhiacovski và Cauchy (Cô-si), và tên gọi chuẩn quốc tế của nó là bđt Cauchy- Schwart. 

Tập số N₀ là kí hiệu thường để chỉ tập các số nguyên không âm, để phân biệt với tập số tự nhiên N. Theo quy ước của IMU, tập số tự nhiên N không chứa số 0, tức là tập số nguyên dương (bằng với tập N* của Việt Nam). Tuy nhiên, ở nước ta, tập số tự nhiên N vẫn bao gồm số 0, vì thế phải “mọc” thêm tập N* ý chỉ tập số nguyên dương. 

R+ là tập các số thực dương (quy ước IMU). Trong trường phái toán châu Âu (tiêu biểu là Pháp), nó có thể để chỉ tập các số thực không âm. 

C là tập các số phức. (cái này miễn bàn) 

6 tháng 6 2021

Đăk lập là sai chính phụ cx sai ( gà mới cho chính phụ là đúng)

- Từ Chính Phụ 

- Học tốt ạ! =D

19 tháng 11 2023

Cái này thì tùy nơi nha bạn. Nhưng nếu làm bài chuyên thì cứ chơi cái này thoải mái, tại vì nguyên tắc làm bài chuyên là được dùng bất cứ kiến thức gì, miễn là làm được bài thì thôi. Còn nếu thi đề thường thì chỉ được dùng những BĐT quen thuộc thôi nha bạn

30 tháng 3 2016

bất phương triinhf không ẩn

30 tháng 3 2016

1 dạng của Cô - si