Cho tứ giác lồi ABCD, hai đường chéo cắt nhau ở O. Cho biết chu vi các tam giác AOB và COD bằng nhau, chu vi các tam giác ABC và DCB bằng nhau, chu vi các tam giác ABD và DCA bằng nhau( chu vi tam giác là tổng độ dài 3 cạnh tam giác). Chứng minh ABCD là hình thang cân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bn xem ở đây nhé, bấm vô dòng chữ màu xanh.
Câu hỏi của Đặng Phương Thảo - Toán lớp 8 - Học toán với OnlineMath
Bạn ơi câu đàu tiên phải là "của tứ giác ABCD" nhé, mình đánh máy nhầm.
Mà bạn là VIP bias T.O.P đúng hơm,y chang mình. Kết bạn nhoa~
Gọi O là giao điểm 2 đường chéo AC và BD cảu tứ giác ABCD.
Xét tam giác AOB, theo bất đẳng thúc tam giác, ta có: AB<OA+OB
Xét tam giác COD, theo bất đẳng thức tam giác, ta có: CD<OC+OD
Suy ra: AB+CD<OA+OB+OC+OD
hay AB+CD<AC+BD (1)
Ta lại có: AB+BD+AD=<AC+CD+AD
\(\Rightarrow\) AB+BD=<AC+CD
\(\Rightarrow\) AB-CD=<AC-BD (2)
Từ (1) và (2), suy ra: 2AB<2AC (cộng vế theo vế)
\(\Rightarrow\) AB<AC (đpcm)
Đảm bảo chính xác 100%
Độ tin cậy không cần bàn cãi.