2) Tìm số tự nhiên x để A = 25 + 135 + 150 + x chia hết cho 5 và không chia hết cho 5 . Ba tổng của 5 số tự nhiên liên tiếp chia hết cho 5 không , vì sao ?
Các bạn làm giúp mik nhé ^^ . Ai nhanh mik kb cho nè ._.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) thấy 60 chia hết cho 15 => 60n chia hết cho 15
45 chia hết cho 15 nhưng không chi hết cho 30
=> 60n+45 chia hết cho 15 nhưng không chia hết cho 30
b) ta có 3 số nguyên liên tiếp là a,a+1,a+2
tổng của 3 số nguyên liên tiếp này là a+a+1+a+2=3a+3 chia hết cho 3
d) vì khi chia 4 stn này cho 5 nhận các số dư khác nhau => 1 số là 5k+1, 1 số là 5n+2, 1 số là 5a+3, 1 số là 5b+4 (với k,n,a,b thuộc n)
=> tổng 4 stn này là 5k+1+5n+2+5a+3+5b+4= 5(k+n+a+b)+5 chia hết cho 5
bai 1 :x la so chan (chia het cho 2)
x la so le (khong chia het cho 2
bai 2:tong cua 5 so tu nhien lien tiep chia het cho 5 vi tong 5 so tu nhien lien tiep la so co tan cung 0,5
bai 3:b,xy+yx=(x nhan 10)+y+(y nhan 10)+x=10x+y+10y+x=11x+11y.11x va 11y chia het cho 11. vay xy+yx chia het cho 11
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
TH1: Nếu a chia hết cho 3 => Đề bài đúng
TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)
=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng
TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)
=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng
TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)
Bài 5:
Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3
Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2
Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4
Nhưng: 2 không chia hết cho 4
Nên: 4(b+1)+2 không chia hết cho 4
Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4
Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)
Gọi tổng của 3 stn liên tiếp là:n+n+1+n+2
Ta có:
n+n+1+n+2=3n+3 chia hết cho 3 (đpcm)
Gọi tổng của 4 stn liên tiếp là:n+n+1+n+2+n+3
=4n+6 ko chia hết cho 4(đpcm)
a)Gọi ba số tự nhiên liên tiếp lần lượt là a-1 , a , a+1 (a thuộc N)
Tổng ba stn liên tiếp là:
a-1+a+a+1=3a
Vì 3a chia hết cho 3
=> Tổng ba số tn liên tiếp chia hết cho 3
b)Gọi 4 stn liên tiếp lần lượt là a-1 , a , a+1 , a+2 (a thuộc N)
Tổng bốn stn liên tiếp là:
a-1+a+a+1+a+2=4a+2
Vì 4a chia hết cho 4 mà 2 ko chia hết cho 4 => 4a+2 ko chia hết cho 4
Vậy tổng bốn stn liên tiếp ko chia hết cho 4
a) Gọi 3 số đó là a, a + 1, a + 2 (a \(\in\) N)
Ta có :
a + (a + 1) + (a + 2) = 3a + 3 \(⋮\) 3
Vậy 3 STN liên tiếp chia hết cho 3.
b) Gọi 4 số đó là a, a + 1, a + 2, a + 3 (a \(\in\) N)
Ta có :
a + (a + 1) + (a + 2) + (a + 3) = 4a + 6 \(⋮̸\)4
Vậy 4 STN liên tiếp chia hết cho 4.
A chia hết cho 5 khi và chỉ khi x chia hết cho 5
A không chia hết cho 5 khi và chỉ khi x không chia hết cho 5
gọi 5 số tự nhiên liên tiếp là a, a+1, a+2, a+3, a+4
Tổng của 5 số ấy là: a + a + 1 + a + 2 + a + 3 + a + 4
= 5a + 10
Vì 5a luôn chia hết cho 5 và 10 chia hết cho 5 => 5a + 10 luôn chia hết cho 5
=> Tổng của 5 số tự nhiên liên tiếp chia hết cho 5
=> Ba tổng của 5 số tự nhiên liên tiếp chia hết cho 5