K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 6 2021

\(V=\dfrac{1}{3}SA.S_{ABCD}\Rightarrow S_{ABCD}=\dfrac{3V}{SA}=22\sqrt{3}\)

\(\Rightarrow\dfrac{1}{2}AB.AD+\dfrac{1}{2}BC.CD=22\sqrt{3}\)

\(\Leftrightarrow5AD+3CD=44\) (1)

Mặt khác: \(\left\{{}\begin{matrix}BD^2=AB^2+AD^2=AD^2+75\\BD^2=BC^2+CD^2=CD^2+27\end{matrix}\right.\)

\(\Rightarrow AD^2+75=CD^2+27\Rightarrow AD^2+48=CD^2\) (2)

Giải hệ (1) và (2) ta được \(\left\{{}\begin{matrix}AD=4\\CD=8\end{matrix}\right.\)

Từ A kẻ \(AH\perp BD\) \(\Rightarrow BD\perp\left(SAH\right)\) \(\Rightarrow\left(SBD\right)\)  và (ABCD) đều vuông góc (SAH)

\(\Rightarrow\widehat{SHA}\) là góc giữa (SBD) và đáy

Hệ thức lượng tam giác vuông ABD:

\(\dfrac{1}{AH^2}=\dfrac{1}{AD^2}+\dfrac{1}{AB^2}=\dfrac{91}{1200}\Rightarrow AH=\dfrac{20\sqrt{273}}{91}\)

\(cot\widehat{SHA}=\dfrac{AH}{SA}=\dfrac{20\sqrt{273}}{819}\)

24 tháng 6 2021

gọi x là độ dài cạnh AD; y là độ dài cạnh CD

\(\Rightarrow S_{ABCD}=S_{BAD}+S_{BCD}=\dfrac{1}{2}.AB.AD+\dfrac{1}{2}BC.CD=\dfrac{1}{2}5\sqrt{3}x+\dfrac{1}{2}3\sqrt{3}y\)

\(\Rightarrow V_{SABCD}=\dfrac{1}{3}SA.S_{ABCD}=\dfrac{1}{3}.9.\left(\dfrac{1}{2}.5\sqrt[]{3}x+\dfrac{1}{2}3\sqrt{3}y\right)=\dfrac{3\sqrt{3}}{2}\left(5x+3y\right)=66\sqrt{3}\\ \Rightarrow5x+3y=44\)

\(AH\perp BD\left(H\in BD\right)\\ cot\left(\left(SBD\right),\left(ABCD\right)\right)=\widehat{SHA}\Rightarrow cot\widehat{SHA}=\dfrac{SA}{AH}\)

NV
7 tháng 5 2023

Từ A kẻ \(AE\perp SB\) (\(E\in SB\))

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\AB\perp BC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

\(\Rightarrow BC\perp AE\)

\(\Rightarrow AE\perp\left(SBC\right)\)

\(\Rightarrow\widehat{ACE}\) là góc giữa AC và (SBC)

Hệ thức lượng trong tam giác SAB:

\(\dfrac{1}{AE^2}=\dfrac{1}{SA^2}+\dfrac{1}{AB^2}\Rightarrow AE=\dfrac{SA.AB}{\sqrt{SA^2+AB^2}}=\dfrac{a\sqrt{3}}{2}\)

\(AC=AB\sqrt{2}=a\sqrt{2}\)

\(\Rightarrow sin\widehat{ACE}=\dfrac{AE}{AC}=\dfrac{\sqrt{6}}{4}\)

NV
7 tháng 5 2023

loading...

NV
18 tháng 4 2021

1.

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp AB\\AD\perp AB\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SAD\right)\)

\(\Rightarrow\widehat{SBA}\) là góc giữa SB và (SAD)

\(tan\widehat{SBA}=\dfrac{SA}{AB}=\sqrt{3}\Rightarrow\widehat{SBA}=60^0\)

2.

\(SA\perp\left(ABC\right)\Rightarrow\left\{{}\begin{matrix}SA\perp AB\\SA\perp AC\end{matrix}\right.\) \(\Rightarrow\) các tam giác SAB và SAC vuông

\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AB\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp SB\)

\(\Rightarrow\) Tam giác SBC vuông

Vậy tứ diện có 4 mặt đều là tam giác vuông (ABC hiển nhiên vuông theo giả thiết)

NV
17 tháng 4 2021

3.

a.

 \(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAC\right)\)

b.

Gọi M là trung điểm BC \(\Rightarrow IM||AC\)

\(\Rightarrow AC||\left(SIM\right)\Rightarrow d\left(AC;SI\right)=d\left(AC;\left(SIM\right)\right)=d\left(A;\left(SIM\right)\right)\)

Qua A kẻ đường thẳng song song BC cắt IM kéo dài tại K

\(\Rightarrow IM\perp AK\Rightarrow IM\perp\left(SAK\right)\)

Trong mp (SAK), kẻ AH vuông góc SK

\(\Rightarrow AH\perp\left(SIM\right)\Rightarrow AH=d\left(A;\left(SIM\right)\right)\)

\(AK=CM=\dfrac{b}{2}\)

\(\dfrac{1}{AH^2}=\dfrac{1}{SA^2}+\dfrac{1}{AK^2}\Rightarrow AH=\dfrac{SA.AK}{\sqrt{SA^2+AK^2}}=\dfrac{\dfrac{h.b}{2}}{\sqrt{h^2+\dfrac{b^2}{4}}}=\dfrac{bh}{\sqrt{b^2+4h^2}}\)

NV
28 tháng 3 2021

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\BC\perp AB\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

Kẻ \(AH\perp SB\Rightarrow AH\perp\left(SBC\right)\)

\(\Rightarrow\widehat{ACH}\) là góc giữa AC và (SBC)

\(AC=a\sqrt{2}\) ; \(\dfrac{1}{AH^2}=\dfrac{1}{SA^2}+\dfrac{1}{AB^2}=\dfrac{1}{\dfrac{6a^2}{9}}+\dfrac{1}{a^2}\Rightarrow AH=\dfrac{a\sqrt{10}}{5}\)

\(\Rightarrow sin\widehat{ACH}=\dfrac{AH}{AC}=\dfrac{\sqrt{5}}{5}\Rightarrow\widehat{ACH}\approx26^034'\)

20 tháng 2 2019

Đáp án A

3 tháng 10 2019

Đáp án A