Chung minh voi moi so nguyen thi: 2n-1)3-(2n-1)chia het cho 8
Cac bn giai chi tiet nha mk can gap lam!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 6=23 và (2.3)=1
Ta có:
n^3+3n^2+n=n^2(n+1)+2n(n+1) =n(n+1)(n+2)
Nhận thấy n(n+1)(n+2) là tích 3 số nguyên liên tiếp
suy ra Tồn tại 1 số chia hết cho 2 (vì n(n+1) là tích 2 số nguyên liên tiếp) (với mọi số nguyên n)
Tồn tại 1 số chia hết cho 3 (vì n(n+1)(n+2) là tích 3 số nguyên liên tiếp)
suy ra n(n+1)(n+2) chia hết cho 2,3
hay n^3+3n^2+2n chia hết cho 6
suy ra ĐPCM
1. a là số tự nhiên chia 5 dư 1
=> a = 5k + 1 ( k thuộc N )
b là số tự nhiên chia 5 dư 4
=> b = 5k + 4 ( k thuộc N )
Ta có ( b - a )( b + a ) = b2 - a2
= ( 5k + 4 )2 - ( 5k + 1 )2
= 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )
= 25k2 + 40k + 16 - 25k2 - 10k - 1
= 30k + 15
= 15( 2k + 1 ) chia hết cho 5 ( đpcm )
2. 2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2n2 + 6n
= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )
3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1
= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1
= 3n - 2n2 - 4n2 + 3n + 1 - 1
= -6n2 + 6n
= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )
a) 25xy (có gạch ngang trên đầu) chia hết cho 2,5 => y = 0
25x0 chia hết cho 3 => 2 + 5 + x + 0 chia hết cho 3 => 7 + x chia hết cho 3
=> x = {2;5;8}
b) x13y chia hết cho 2,5 => y = 0
x130 chia hết cho 3,9 => x + 1 + 3 + 0 chia hết cho 9 => 4 + x chia hết cho 9
=> x = 5
Nếu chia hết cho 2 và 5 thì số tận cùng là 0
y=0 (cả 2 câu a và b)
Chia hết cho 3 và 9 thì mình phải cộng các chữ số lại xem có chia hết cho 3 và 9 không
a. 2+5+0=7. Vậy x=2; 5: 8
b. 1+3+0=4. Vậy x=5
Đáp số: a. x=2; 5; 8
y=0
b. x=5
y=0
trong 2 số tự nhiên liên tiếp sẽ có 1 số chia hết cho 2
=>n(n+1)(2n+1) chia hết cho 2
xét n=3k=>n(n+1)(2n+1) chia hết cho 3 (I)
xét n=3k+1=>2n+1=3.2k+2+1=3.2k+3=3(2k+1) chia hết cho 3
=>n(n+1)(2n+1) chia hết cho 3 (II)
xét n=3k+2=>n+1=3k+3=3(k+3) chia hết cho 3
=>n(n+1)(2n+1) chia hết cho 3 (III)
từ (I);(II);(III)=>n(n+1)(2n+1) chia hết cho 3
vì (2;3)=1=>n(n+1)(2n+1) chia hết cho 6
=>đpcm
trong 2 số tự nhiên liên tiếp sẽ có 1 số chia hết cho 2
=>n(n+1)(2n+1) chia hết cho 2
xét n=3k=>n(n+1)(2n+1) chia hết cho 3 (I)
xét n=3k+1=>2n+1=3.2k+2+1=3.2k+3=3(2k+1) chia hết cho 3
=>n(n+1)(2n+1) chia hết cho 3 (II)
xét n=3k+2=>n+1=3k+3=3(k+3) chia hết cho 3
=>n(n+1)(2n+1) chia hết cho 3 (III)
từ (I);(II);(III)=>n(n+1)(2n+1) chia hết cho 3
vì (2;3)=1=>n(n+1)(2n+1) chia hết cho 6
=>đpcm
ta co:(11mu n+2)+(12 mu 2n+1)=121.(11mu n)+12.(144 mu n)
=(133-12).(11mu n)+12.(144 mu n)
=133.(11 mu n)+(144mu n -11 mu n).12
ta lai co:133.11 mu n chia het cho 133;(144 mu n)-(11 mu n) chia het cho (144-11)
=>(144 mu n)-(11 mu n)chia het cho 133
=>(11 mu n+2)+(12 mu 2n+1) chia het cho 133
\(\left(2n-1\right)^3-\left(2n-1\right)\)
\(=\left(2n-1\right).\left[\left(2n-1\right)^2-1^2\right]\)
\(=\left(2n-1\right).\left(2n-1-1\right).\left(2n-1+1\right)\)
\(=\left(2n-2\right).\left(2n-1\right).2n\)
\(=2.\left(n-1\right).\left(2n-1\right).2n\)
Với \(n\)lẻ
\(\Rightarrow n-1\)chẵn
\(\Rightarrow n-1⋮2\)
\(\Rightarrow2.\left(n-1\right)⋮4\)
\(\Rightarrow2.\left(n-1\right).2n⋮8\)
\(\Rightarrow2.\left(n-1\right).\left(2n-1\right).2n⋮8\)(1)
Với n chẵn
\(\Rightarrow n⋮2\)
\(\Rightarrow2n⋮4\)
\(\Rightarrow2.\left(n-1\right).2n⋮8\)
\(\Rightarrow2.\left(n-1\right).\left(2n-1\right).2n⋮8\)(1)
Từ (1) và (2)
\(\Rightarrow\left(2n-1\right)^3-\left(2n-1\right)⋮8\forall x\inℤ\)
đpcm