Tìm x,y,z:
X/2 = Y/5 = Z/4 và Z - X= 12
(giúp mình giải với mình k cho)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{2}=\dfrac{z}{3};\dfrac{y}{5}=\dfrac{z}{2}\Rightarrow\dfrac{x}{4}=\dfrac{z}{6}=\dfrac{y}{15}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{x}{4}=\dfrac{z}{6}=\dfrac{y}{15}=\dfrac{x+y+z}{4+6+15}=\dfrac{50}{25}=2\Rightarrow x=8;y=12;y=30\)
1) Ta có: x/6 = y/3 = z/3 và 2x - 3y + 3z = 21
Aps dụng tính chất của dãy tỉ số bằng nhau:
x/6 = y/3 = z/3 = 2x/12 = 3y/9 = 3z/9 = (2x-3y+3z)/ (12 - 9 + 9) = 21/12 = 7/4
=> x/6 = 7/4 => x= 21/2
y/3 = 7/4 -> y= 21/4
z/3 = 7/4 -> z= 21/4
1) đề nó sao ý bạn , sao lại tìm z nữa lại 2/3 ?
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{-3}=\frac{z}{-4}=\frac{4x}{4.2}=\frac{3y}{3.\left(-4\right)}=\frac{2z}{2.\left(-4\right)}=\frac{4x+3y+2z}{8+\left(-12\right)+\left(-8\right)}=\frac{1}{-12}=\frac{-1}{12}\)
\(\frac{x}{2}=\frac{-1}{12}\Rightarrow x=\frac{-1}{6}\)
\(\frac{y}{-3}=\frac{-1}{12}\Rightarrow y=\frac{1}{4}\)
\(\frac{z}{-4}=\frac{-1}{12}\Rightarrow z=\frac{1}{3}\)
Vậy x=-1/6 ; y=1/4 và z = 1/3
3) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z-3}{5}\Rightarrow\frac{x+1+y+2+z-3}{3+4+5}=\frac{18+1+2-3}{12}=\frac{18}{12}=\frac{3}{2}\)
\(\frac{x+1}{3}=\frac{3}{2}\Rightarrow x=\frac{7}{2}\)
\(\frac{y+2}{4}=\frac{3}{2}\Rightarrow y=4\)
\(\frac{z-3}{5}=\frac{3}{2}\Rightarrow z=\frac{21}{2}\)
Vậy x=7/2 ; y=4 và z=21/2
4) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{x-1+y-2+z-3}{3+4+5}=\frac{30-\left(1+2+3\right)}{12}=\frac{24}{12}=2\)
\(\frac{x-1}{3}=2\Rightarrow x=7\)
\(\frac{y-2}{4}=2\Rightarrow y=10\)
\(\frac{z-3}{5}=2\Rightarrow z=13\)
Vậy x=7 ; y=10 và z=13
ta có
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2+y^2+z^2}{4+9+16}=\frac{116}{29}=4\)
\(\Rightarrow x^2=16\Rightarrow\orbr{\begin{cases}x=4,y=6,z=8\\x=-4,y=-6,z=-8\end{cases}}\)
Đặt \(N:\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
\(\Leftrightarrow N^2=\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2+y^2+z^2}{4+9+16}=\frac{116}{29}=4\)
\(\Leftrightarrow N=\pm2\)
Nếu \(N=\left(-2\right)\):
\(\frac{x}{2}=-2\Leftrightarrow y=-4\)
\(\frac{y}{3}=-2\Leftrightarrow y=-6\)
\(\frac{z}{4}=-2\Leftrightarrow y=-8\)
Nếu \(N=2\):
\(\frac{x}{2}=2\Leftrightarrow y=4\)
\(\frac{y}{3}=2\Leftrightarrow y=6\)
\(\frac{z}{4}=2\Leftrightarrow y=8\)
Lời giải:
a.
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=\frac{x-y}{2-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30\)
\(\Rightarrow \left\{\begin{matrix} x=60\\ y=45\\ z=40\end{matrix}\right.\)
b)
Từ đkđb suy ra \(\frac{10x}{1}=\frac{5y}{\frac{1}{3}}=\frac{z}{\frac{1}{6}}=\frac{10x-5y+z}{1-\frac{1}{3}+\frac{1}{6}}=\frac{25}{\frac{5}{6}}=30\)
\(\Rightarrow \left\{\begin{matrix} x=3\\ y=2\\ z=5\end{matrix}\right.\)
ta có: \(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}\)
ADTCDTSBN
có: \(\frac{z}{4}=\frac{x}{2}=\frac{z-x}{4-2}=\frac{12}{2}=6\)
=> x/2 = 6 => x = 12
y/5 = 6 => y = 30
z/4 = 6 => z= 24
KL:...