cho 11g hỗn hợp Fe và Al tác dụng với 1 lượng vừa đủ HCL. Sau phản ứng thu được 8,96l H2. Tính thành phần % khối lượng kim lọai trong hỗn hợp ban đầu và mHCL tgpư
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: 27nAl + 56nFe = 0,83 (1)
PT: \(2Al+3H_2SO_4\rightarrow Al_2\left(SO_4\right)_3+3H_2\)
\(Fe+H_2SO_4\rightarrow FeSO_4+H_2\)
Theo PT: \(n_{H_2}=\dfrac{3}{2}n_{Al}+n_{Fe}=\dfrac{0,56}{22,4}=0,025\left(mol\right)\left(2\right)\)
Từ (1) và (2) \(\Rightarrow n_{Al}=n_{Fe}=0,01\left(mol\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\%m_{Al}=\dfrac{0,01.27}{0,83}.100\%\approx32,53\%\\\%m_{Fe}\approx67,47\%\end{matrix}\right.\)
b, nH2SO4 = nH2 = 0,025 (mol)
\(\Rightarrow m_{ddH_2SO_4}=\dfrac{0,025.98}{20\%}=12,25\left(g\right)\)
\(n_{H_2SO_4}=0,2.2=0,4\left(mol\right)\)
Fe + H2SO4 → FeSO4 + H2
2Al + 3H2SO4 → Al2(SO4)3 + 3H2
Gọi x,y lần lượt là số mol Fe, Al
\(\left\{{}\begin{matrix}56x+27y=11\\x+\dfrac{3}{2}y=0,4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=0,1\\y=0,2\end{matrix}\right.\)
=>\(\%m_{Fe}=\dfrac{0,1.56}{11}.100=50,91\%\)
=> %m Al = 100 - 50,91 =49,09 %
b)Theo PT: \(n_{H_2}=n_{H_2SO_4}=0,4\left(mol\right)\)
=> \(V_{H_2}=0,4.22,4=8,96\left(l\right)\)
c) \(CM_{FeSO_4}=\dfrac{0,1}{0,2}=0,5M\)
\(CM_{Al_2\left(SO_4\right)_3}=\dfrac{\dfrac{0,2}{2}}{0,2}=0,5M\)
Đặt nAl=a(mol); nFe=b(mol) (a,b>0)
Ta có: nH2=8,96/22,4=0,4(mol)
PTHH: 2 Al + 6 HCl -> 2 AlCl3 + 3 H2
a_________3a____a____1,5a(mol)
Fe +2 HCl -> FeCl2 + H2
b__2b____b____b(mol)
Ta có hpt:
\(\left\{{}\begin{matrix}27a+56b=16,7\\1,5a+b=0,4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0,1\\b=0,25\end{matrix}\right.\)
=> mAl= 0,1.27=2,7(g) =>%mAl= (2,7/16,7).100=16,17%
=> CHỌN B
TN1: Gọi \(\left\{{}\begin{matrix}n_{Zn}=a\left(mol\right)\\n_{Fe}=b\left(mol\right)\\n_{Cu}=c\left(mol\right)\end{matrix}\right.\)
=> 65a + 56b + 64c = 37 (1)
PTHH: Zn + 2HCl --> ZnCl2 + H2
a---------------------->a
Fe + 2HCl --> FeCl2 + H2
b---------------------->b
=> \(a+b=\dfrac{8,96}{22,4}=0,4\) (2)
TN2: Gọi \(\left\{{}\begin{matrix}n_{Zn}=ak\left(mol\right)\\n_{Fe}=bk\left(mol\right)\\n_{Cu}=ck\left(mol\right)\end{matrix}\right.\)
=> ak + bk + ck = 0,15 (3)
\(n_{Cl_2}=\dfrac{3,92}{22,4}=0,175\)
PTHH: Zn + Cl2 --to--> ZnCl2
ak-->ak
2Fe + 3Cl2 --to--> 2FeCl3
bk--->1,5bk
Cu + Cl2 --to--> CuCl2
ck-->ck
=> ak + 1,5bk + ck = 0,175 (4)
(1)(2)(3)(4) => \(\left\{{}\begin{matrix}a=0,2\left(mol\right)\\b=0,2\left(mol\right)\\c=0,2\left(mol\right)\\k=0,25\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\%m_{Zn}=\dfrac{0,2.65}{37}.100\%=35,135\%\\\%m_{Fe}=\dfrac{0,2.56}{37}.100\%=30,27\%\\\%m_{Cu}=\dfrac{0,2.64}{37}.100\%=34,595\%\end{matrix}\right.\)
\(a,n_{Al}=x(mol);n_{Fe}=y(mol)\\ \Rightarrow 27x+56y=11(1)\\ n_{H_2}=\dfrac{8,96}{22,4}=0,4(mol)\\ 2Al+6HCl\to 2AlCl_3+3H_2\\ Fe+2HCl\to FeCl_2+H_2\\ \Rightarrow 1,5x+y=0,4(2)\\ (1)(2)\Rightarrow x=0,2(mol);y=0,1(mol)\\ \Rightarrow \begin{cases} \%_{Al}=\dfrac{0,2.27}{11}.100\%=49,09\%\\ \%_{Fe}=100\%-49,09\%=50,91\% \end{cases}\\ b,\Sigma n_{HCl}=3x+2y=0,8(mol)\\ \Rightarrow V_{dd_{HCl}}=\dfrac{0,8}{2}=0,4(l)\)
\(\left\{{}\begin{matrix}Fe\\Al\end{matrix}\right.+HCl->\left\{{}\begin{matrix}FeCl2\\AlCl3\end{matrix}\right.+H2\)
Ta có số mol Fe là x , Al là y (mol)
\(\left\{{}\begin{matrix}56x+27y=11\\127x+133,5y=39,4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0,1\\y=0,2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\%mFe=\dfrac{0,1.56}{11}=50,9\%\\\%mAl=\dfrac{0,2.27}{11}=49,09\%\end{matrix}\right.\)
Bảo toàn e :
\(2.nH2=2.nFe+3.nAl\Rightarrow nH2=0,4\left(mol\right)\)
\(V=0,4.22,4=8,96\left(l\right)\)
\(nFe=nFeCl2=0,1\left(mol\right)\)
\(nAl=nAlCl3=0,2\left(mol\right)\)
\(\Rightarrow nHCl\left(pứ\right)=2.0,1+3.0,2=0,8\left(mol\right)\)
\(Cm=\dfrac{n}{V}=\dfrac{0,8}{0,2}=4\left(M\right)\)
PTHH: \(Fe+H_2SO_4\rightarrow FeSO_4+H_2\)
a_______a_______a_____a (mol)
\(2Al+3H_2SO_4\rightarrow Al_2\left(SO_4\right)_3+3H_2\uparrow\)
2b______3b__________b_____3b (mol)
Ta lập HPT: \(\left\{{}\begin{matrix}56a+27\cdot2b=11\\a+3b=0,2\cdot2=0,4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=0,1\\b=0,1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\%m_{Fe}=\dfrac{0,1\cdot56}{11}\cdot100\%\approx50,91\%\\\%m_{Al}=49,09\%\end{matrix}\right.\)
Theo các PTHH: \(\left\{{}\begin{matrix}n_{H_2}=0,4\left(mol\right)\\n_{FeSO_4}=0,1\left(mol\right)\\n_{Al_2\left(SO_4\right)_3}=0,3\left(mol\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}V_{H_2}=0,4\cdot22,4=8,96\left(l\right)\\C_{M_{FeSO_4}}=\dfrac{0,1}{0,2}=0,5\left(M\right)\\C_{M_{Al_2\left(SO_4\right)_3}}=\dfrac{0,3}{0,2}=1,5\left(M\right)\end{matrix}\right.\)
a) nH2SO4=0,4(mol)
Đặt: nFe=x(mol); nAl=y(mol) (x,y>0)
PTHH: Fe + H2SO4 -> FeSO4 + H2
x________x______x______x(mol)
2Al + 3 H2SO4 -> Al2(SO4)3 + 3 H2
y____1,5y_______0,5y_______1,5y(mol)
Ta có hpt:
\(\left\{{}\begin{matrix}56x+27y=11\\x+1,5y=0,4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0,1\\y=0,2\end{matrix}\right.\)
=> mFe=0,1.56=5,6(g)
=>%mFe=(5,6/11).100=50,909%
=>%mAl= 49,091%
b) V(H2,đktc)=0,4.22,4=8,96(l)
c) nAl2(SO4)3= 0,5y=0,5.0,2=0,1(mol)
nFeSO4=x=0,1(mol)
Vddsau=VddH2SO4=0,2(l)
=>CMddAl2(SO4)3= 0,1/0,2=0,5(M)
CMddFeSO4=0,1/0,2=0,5(M)
a) Gọi số mol Al, Fe là a, b (mol)
=> 27a + 56b = 13,9 (1)
\(n_{H_2}=\dfrac{7,84}{22,4}=0,35\)
PTHH: 2Al + 6HCl --> 2AlCl3 + 3H2
a--->3a--------------->1,5a
Fe + 2HCl --> FeCl2 + H2
b-->2b---------------->b
=> 1,5a + b = 0,35 (2)
(1)(2) => a = 0,1; b = 0,2
nHCl = 3a + 2b = 0,7 (mol)
=> mHCl = 0,7.36,5 = 25,55(g)
b)
mAl = 0,1.27 = 2,7 (g)
mFe = 0,2.56 = 11,2 (g)
Gọi $n_{Fe} = a(mol) ; n_{Al} = b(mol)$
$\Rightarrow 56a + 27b = 11(1)$
$Fe + 2HCl \to FeCl_2 + H_2$
$2Al + 6HCl \to 2AlCl_3 + 3H_2$
$n_{H_2} = a + 1,5b = 8,96 : 22,4 = 0,4(2)$
Từ (1)(2) suy ra a = 0,1 ; b = 0,2
Vậy :
$\%m_{Fe} = \dfrac{0,1.56}{11}.100\% = 50,91\%$
$\%m_{Al} = 100\% -50,91\% = 49,09\%$