\(4x^2-4x-10=\sqrt{8x^2-8x-10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\sqrt[]{8x^2-16x+10}+\sqrt[]{2x^2-4x+10}=\sqrt[]{7-x^2+2x}\)
\(\Leftrightarrow\sqrt[]{8x^2-16x+10}=\dfrac{1}{4}\sqrt[]{2\left(7-x^2+2x\right)}-\sqrt[]{2x^2-4x+10}\)
\(\Leftrightarrow\sqrt[]{8x^2-16x+10}=\dfrac{1}{4}\sqrt[]{14-2x^2+4x}-\sqrt[]{2x^2-4x+10}\left(1\right)\)
Áp dụng BĐT Bunhiacopxki ta được:
\(\left[\dfrac{1}{4}\sqrt[]{14-2x^2+4x}+\left(-1\right).\sqrt[]{2x^2-4x+10}\right]^2\le\left(\dfrac{1}{16}+1\right)\left(14-2x^2+4x+2x^2-4x+10\right)=\dfrac{17}{16}.24=\dfrac{51}{2}\)
Dấu "=" xảy ra khi và chỉ khi
\(\sqrt[]{14-2x^2+4x}+4\sqrt[]{2x^2-4x+10}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}14-2x^2+4x=0\\2x^2-4x+10=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}14+2-2\left(x^2-2x+1\right)=0\\2\left(x^2-2x+1\right)+10-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2\left(x-1\right)^2+16=0\\2\left(x-1\right)^2+8=0\end{matrix}\right.\) \(\Leftrightarrow x\in\varnothing\)
\(pt\left(1\right)\Leftrightarrow8x^2-16x+10=\dfrac{51}{2}\)
\(\Leftrightarrow16x^2-32x+20-51=0\)
\(\Leftrightarrow16x^2-32x-31=0\left(2\right)\)
\(\Delta'=256+496=752>0\)
\(\Rightarrow\sqrt[]{\Delta'}=4\sqrt[]{47}\)
\(pt\left(2\right)\) có 2 nghiệm phân biệt
\(x=\dfrac{16\pm4\sqrt[]{47}}{16}=\dfrac{4\pm\sqrt[]{47}}{4}\)
Cách giải trên đã sai, mình giải lại
\(\left(1\right)\Leftrightarrow\sqrt[]{8\left(x^2-2x+1\right)+2}+\sqrt[]{2\left(x^2-2x+1\right)+2}=\sqrt[]{8-\left(x^2-2x+1\right)}\)
\(\Leftrightarrow\sqrt[]{8\left(x-1\right)^2+2}+\sqrt[]{2\left(x-1\right)^2+2}=\sqrt[]{8-\left(x-1\right)^2}\left(2\right)\)
Vì \(\left(x-1\right)^2\ge0,\forall x\in R\)
\(\Rightarrow\left\{{}\begin{matrix}8\left(x-1\right)^2+2\ge2,\forall x\in R\\2\left(x-1\right)^2+2\ge2,\forall x\in R\\8-\left(x-1\right)^2\le8,\forall x\in R\end{matrix}\right.\)
Nên khi \(\left(x-1\right)^2=0\Leftrightarrow x=1\)
Thay \(x=1\) vào \(\left(2\right)\) ta được
\(\sqrt[]{8.0+2}+\sqrt[]{2.0+2}=\sqrt[]{8-0}\)
\(\Leftrightarrow\sqrt[]{2}+\sqrt[]{2}=\sqrt[]{8}=2\sqrt[]{2}\left(đúng\right)\)
Vậy nghiệm của phương trình đã cho là \(x=1\)


a:
ĐKXĐ: \(x>=-2\)
\(1+\sqrt{x^2+7x+10}=\sqrt{x+5}+\sqrt{x+2}\)
=>\(1+\sqrt{\left(x+2\right)\left(x+5\right)}=\sqrt{x+5}+\sqrt{x+2}\)
Đặt \(\sqrt{x+5}=a;\sqrt{x+2}=b\)(ĐK: a>0 và b>0)
Phương trình sẽ trở thành:
1+ab=a+b
=>ab-a-b+1=0
=>a(b-1)-(b-1)=0
=>(b-1)(a-1)=0
=>\(\left\{{}\begin{matrix}a-1=0\\b-1=0\end{matrix}\right.\Leftrightarrow a=b=1\)
=>\(\left\{{}\begin{matrix}x+5=1\\x+2=1\end{matrix}\right.\)
=>\(x\in\varnothing\)
b: \(\sqrt{4x^2-2x+\dfrac{1}{4}}=4x^3-x^2+8x-2\)
=>\(\sqrt{\left(2x\right)^2-2\cdot2x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2}=4x^3-x^2+8x-2\)
=>\(\sqrt{\left(2x-\dfrac{1}{2}\right)^2}=4x^3-x^2+8x-2\)
=>\(\left|2x-\dfrac{1}{2}\right|=4x^3-x^2+8x-2\)(1)
TH1: x>=1/4
\(\left(1\right)\Leftrightarrow4x^3-x^2+8x-2=2x-\dfrac{1}{2}\)
=>\(4x^3-x^2+6x-\dfrac{3}{2}=0\)
=>\(x^2\left(4x-1\right)+1,5\left(4x-1\right)=0\)
=>\(\left(4x-1\right)\left(x^2+1,5\right)=0\)
=>4x-1=0
=>x=1/4(nhận)
TH2: x<1/4
Phương trình (1) sẽ trở thành:
\(4x^3-x^2+8x-2=-2x+\dfrac{1}{2}\)
=>\(x^2\left(4x-1\right)+2\left(4x-1\right)+0,5\left(4x-1\right)=0\)
=>\(\left(4x-1\right)\cdot\left(x^2+2,5\right)=0\)
=>4x-1=0
=>x=1/4(loại)

\(a,ĐK:x\ge1\\ PT\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=-2\\ \Leftrightarrow-2\sqrt{x-1}=-2\Leftrightarrow\sqrt{x-1}=1\\ \Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\\ b,ĐK:x\ge0\\ PT\Leftrightarrow\dfrac{1}{3}\sqrt{2x}-2\sqrt{2x}+3\sqrt{2x}=12\\ \Leftrightarrow\dfrac{4}{3}\sqrt{2x}=12\Leftrightarrow\sqrt{2x}=9\\ \Leftrightarrow2x=81\Leftrightarrow x=\dfrac{81}{2}\left(tm\right)\)

Lời giải:
ĐK:.......
Đặt $4x^2+4x+5=a\Rightarrow 8x^2+8x+11=2a+1; 4-4x^2-4x=9-a$
PT trở thành:
$\sqrt{a}+\sqrt{2a+1}=9-a\Leftrightarrow \sqrt{a}-2+\sqrt{2a+1}-3+(a-4)=0$
$\Leftrightarrow \frac{a-4}{\sqrt{a}+2}+\frac{2(a-4)}{\sqrt{2a+1}+3}+(a-4)=0$
$\Leftrightarrow (a-4)\left(\frac{1}{\sqrt{a}+2}+\frac{2}{\sqrt{2a+1}+3}+1\right)=0$
Dễ thấy biểu thức trong ngoặc lớn luôn lớn hơn $0$ nên $a-4=0$
$\Rightarrow a=4$
$\Leftrightarrow 4x^2+4x+5=4$
$\Leftrightarrow 4x^2+4x+1=0\Leftrightarrow (2x+1)^2=0\Leftrightarrow x=-\frac{1}{2}$

\(\sqrt{4x^2+4x+5}+\sqrt{8x^2+8x+11}=4-4x^2-4x\)
<=> \(\sqrt{\left(2x+1\right)^2+4}+\sqrt{2\left(2x+1\right)^2+9}=5-\left(2x+1\right)^2\)
Ta có: \(\left\{{}\begin{matrix}\sqrt{\left(2x+1\right)^2+4}\ge2\\\sqrt{2\left(2x+1\right)^2+9}\ge3\end{matrix}\right.\)
=> VT \(\ge\) 5 mà VP \(\le\) 5
Mà VT = VP
=> 2x + 1 = 0
<=> x = \(\dfrac{-1}{2}\)

a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\left(tm\right)\)
b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))
\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=16\)
\(\Leftrightarrow x=15\left(tm\right)\)

\(PT\Leftrightarrow\sqrt{8x+1}-3+\sqrt{46x-10}-6=-x^3+5x^2+4x+1-3-6\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{8}{\sqrt{8x+1}+3}-5+x^2-4x-3-\frac{10}{\sqrt{46-10x}+6}\right)=0\)
Xét \(\left(\frac{8}{\sqrt{8x+1}+3}-5+x^2-4x-3-\frac{10}{\sqrt{46-10x}+6}\right)\)(*) (đk\(\frac{23}{5}\ge x\ge-\frac{1}{8}\))
(*)\(=\frac{8-5\left(\sqrt{8x+1}+3\right)}{\sqrt{8x+1}+3}+\left(x^2-4x-3\right)-\frac{10}{\sqrt{46-10x}+6}\)
\(=\frac{-7-5\left(\sqrt{8x+1}\right)}{\sqrt{8x+1}+3}+\left(x^2-4x-3\right)-\frac{10}{\sqrt{46-10x}+6}< 0\)
\(\Rightarrow x-1=0\Leftrightarrow x=1\)
Vậy..................
Đề thi thuyển sinh lớp 10 môn Toán Chuyên, TP HCM năm 2012-2013
ĐK \(\frac{-1}{8}\le x\le\frac{23}{5}\)(*) Ta có:
\(\sqrt{8x+1}+\sqrt{46-10x}=-x^3+5x^2+4x+1\)
\(\Leftrightarrow\sqrt{8x+1}-3+\sqrt{46-10x}-6+x^3-x^2-4x^2+4x-8x+8=0\)
\(\Leftrightarrow\frac{8x-1}{\sqrt{8x+1}+3}+\frac{10-10x}{\sqrt{46-10x}+6}+x^2\left(x-1\right)-4x\left(x-1\right)-8\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{8}{\sqrt{8x+1}+3}+\frac{10}{\sqrt{46-10x}+6}+x^2-4x-8\right)=0\)(**)
(*) \(\Rightarrow-1< x< 5\Rightarrow\left(x+1\right)\left(x+5\right)< 0\Rightarrow x^2-4x-5< 0\)
Và \(\frac{8}{\sqrt{8x+1}+3}< \frac{9}{3}=3\Rightarrow\frac{8}{\sqrt{8x+1}+3}-3< 0\) Do vậy:
\(\frac{8}{\sqrt{8x+1}+3}-\frac{10}{\sqrt{46-10x}+6}+x^2-4x-8< 0\)Do đó:
(**)\(\Leftrightarrow x=1\)
Vậy S={1}