Bài 1: Chứng minh rằng: \(A=0,5.\left(2007^{2015}-2003^{2003}\right)\) là số nguyên.
Bài 2: Chứng minh rằng: \(B=\left(\frac{9}{11}-0,81\right)^{2004}\)viết dưới dạng thập phân thì sau dấu phẩy có ít nhất 4000 chữ số 0.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sau khi đọc tin nhắn này, hãy share cho 10 người khác trong OLM nếu không sẽ gặp xui xẻo (cái này thật đấy, ông anh mình mới vào viện do bị bỏng nặng vì nước sôi, mình mượn tài khoản OLM của ổng để học thì thấy ổng đang trêu chọc và tỏ vẻ không tin với tin nhắn có nội dung tương tự như vậy, mình sợ nên phải làm, xin lỗi các bạn!)
Lời giải:
\(\left ( \frac{9}{11}-0,81 \right )^{2007}=\left ( \frac{81}{99}-\frac{81}{100} \right )^{2007}=\frac{81^{2007}}{99^{2007}.100^{2007}}=\frac{9^{2007}}{1100^{2007}}\)
Thấy rằng \(a<\frac{10^{2007}}{1100^{2007}}<\frac{10^{2007}}{1000^{2007}}=\frac{10^{2007}}{10^{2.2007}}=\frac{1}{10^{4014}}\)
\(\Leftrightarrow a<0,\underbrace{000....0}_{4013}1\)
Điều trên chứng tỏ khi viết $a$ dưới dạng số thập phân thì đằng sau $a$ ít nhất phải có $4013$ chữ số $0$
Ta có:
\(\left(\dfrac{9}{11}-0,81\right)^{2004}=\left(\dfrac{9}{1100}\right)^{2004}=\left(\dfrac{9}{11}\right)^{2004}\cdot\left(\dfrac{1}{100}\right)^{2004}\)
\(=\left(\dfrac{9}{11}\right)^{2004}\cdot\left[\left(\dfrac{1}{10}\right)^2\right]^{2004}=\left(\dfrac{9}{11}\right)^{2004}\cdot\left(\dfrac{1}{10}\right)^{4008}\)
Vì cả hai thừa số đều nhỏ hơn 1 nên tích trên nhỏ hơn 1. Ngoài ra thừa số thứ nhất quá nhỏ, không đáng kể, do đó ta có thể xét thừa số thứ hai. Rõ ràng thừa số này có hơn 4000 chữ số 0 đầu tiên sau dấu phẩy; và lại vì thừa số thứ nhất quá nhỏ, không đáng kể nên tích ban đầu có ít nhất 4000 chữ số 0 đầu tiên sau dấu phẩy.
\(2007^{2005}-2003^{2003}=\left(...7\right)^{4.501}.\left(...7\right)^1-\left(...3\right)^{4.500}.\left(...3\right)^3=\left(...1\right).\left(...7\right)-\left(...1\right).\left(...7\right)\)\(=\left(...7\right)-\left(...7\right)=...0\).
Số này có chữ số tận cùng là 0 nên chia hết cho 2 hay có dạng 2k (k \(\in\) Z)
Do đó \(H=0,5.2k=\frac{1}{2}.2k=\frac{2k}{2}=k\) là số nguyên
Phải chứng minh 20072005 - 20032003 có tận cùng là 0
Ta có:
\(2007^{2005}-2003^{2003}=2007^{2004}.2007-2003^{2000}.2003^3\)
\(=\left(2007^4\right)^{501}.2007-\left(2003^4\right)^{500}.\left(...7\right)\)
\(=\left(...1\right)^{501}.2007-\left(...1\right)^{500}.\left(...7\right)\)
\(=\left(...1\right).2007-\left(...1\right).\left(...7\right)\)
\(=\left(...7\right)-\left(...7\right)\)
\(=\left(...0\right)\)
=> 0,5.(20072005 - 20032003) là số nguyên
=> đpcm
2007^2005 là số lẻ
2003^2003 là số lẻ
=>2007^2005-2003^2003 là số chẵn chia hết cho 2
=>0,5(2007^2005-2003^2003)=(2007^2005-2003^2003) /2 là so nguyen dpcm