So sánh: \(\frac{10^{19}+1}{10^{20}+1}\) và \(\frac{10^{20}+1}{10^{21}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10A=10^20+10/10^20+1=1+9/10^20+1 (1)
10B=10^21+10/10^21+1=1+9/10^21+1 (2)
tu (1) va (2) suy ra 10a<10b
suy ra a<b
Áp dụng \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+c}{b+c}\) (a;b;c \(\in\) N*)
Ta có:
\(B=\frac{10^{20}+1}{10^{21}+1}< \frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}\)
\(B< \frac{10.\left(10^{19}+1\right)}{10.\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}=A\)
=> A > B
\(B=\frac{10^{20}+1}{10^{21}+1}< 1\)
NÊN \(\frac{10^{20}+1}{10^{21}+1}< \frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}=\frac{10.\left(10^{19}+1\right)}{10.\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}=A\)
VẬY B<A
Ta thấy:A=\(\frac{10^{19}+1}{10^{20}+1}\)=>10A=\(\frac{10^{20}+10}{10^{20}+1}\)
=>10A=\(\frac{10^{20}+1+9}{10^{20}+1}\)
=>10A=1+\(\frac{9}{10^{20}+1}\)
Ta thấy:B=\(\frac{10^{20}+1}{10^{21}+1}\)
=>10B=\(\frac{10^{21}+10}{10^{21}+1}\)
=>10B=\(\frac{10^{21}+1+9}{10^{21}+1}\)
=>10B=1+\(\frac{9}{10^{21}+1}\)
Do \(\frac{9}{10^{20}+1}\)> \(\frac{9}{10^{21}+1}\)=>A > B
10A=\(\frac{10^{20}+10}{10^{20}+1}\)=\(\frac{10^{20}+1+9}{10^{20}+1}\)=\(1\)+\(\frac{9}{10^{20}+1}\)
10B=\(\frac{10^{21}+10}{10^{21}+1}\)=\(\frac{10^{21}+1+9}{10^{21}+1}\)=\(1\)+\(\frac{9}{10^{21}+1}\)
Vì \(\frac{9}{10^{20}+1}\)>\(\frac{9}{10^{21}+1}\)nên 10A>10B\(\Rightarrow\)A>B
Ta chứng minh bài toán phụ:
Với a<b thì\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(c\inℕ^∗\right)\)
Ta có: \(a< b\)
\(\Rightarrow ac< bc\)
\(\Rightarrow ac+ba< bc+ba\)
\(a\left(b+c\right)< b.\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+c}\)
đpcm
Áp dụng vào bài toán ta có:
\(\frac{10^{20}+1}{10^{21}+1}< \frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}=\frac{10.\left(10^{19}+1\right)}{10.\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}\)
Vậy \(\frac{10^{19}+1}{10^{20}+1}>\frac{10^{20}+1}{10^{21}+1}\)
Tham khảo nhé~
Đặt \(A=\frac{10^{19}+1}{10^{20}+1}\)
\(\Rightarrow10A=\frac{10^{20}+10}{10^{20}+1}=\frac{10^{20}+1+9}{10^{20}+1}=1+\frac{9}{10^{20}+1}\)
\(B=\frac{10^{20}+1}{10^{21}+1}\)
\(\Rightarrow10B=\frac{10^{21}+10}{10^{21}+1}=\frac{10^{21}+1+9}{10^{21}+1}=1+\frac{9}{10^{21}+1}\)
\(\Rightarrow\frac{9}{10^{20}+1}>\frac{9}{10^{21}+1}\)
\(\Rightarrow1+\frac{9}{10^{20}+1}>1+\frac{9}{10^{21}+1}\)
\(\Rightarrow10A>10B\Rightarrow A>B\)