Tìm x,y,z biết : x2+3y2+z2+2xy-2yz-2x+4y+10=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 - 3y2 + 2xy + 2x - 4y - 7 = 0
<=> 4.(x2 - 3y2 + 2xy + 2x - 4y - 7) = 0
<=> 4x2 - 12y2 + 8xy + 8x - 16y - 28 = 0
<=> (4x2 + 8xy + 4y2) + (8x + 8y) + 4 - 16y2 - 24y - 32 = 0
<=> (2x + 2y)2 + 4(2x + 2y) + 4 - (16y2 + 24y + 9) = 23
<=> (2x + 2y + 2)2 - (4y + 3)2 = 23
<=> (2x + 6y + 5)(2x - 2y - 1) = 23
Vì \(x;y\inℤ\Rightarrow2x+6y+5;2x-2y-1\inℤ\)
Lập bảng :
2x + 6y + 5 | 1 | 23 | -1 | -23 |
2x - 2y - 1 | 23 | 1 | -23 | -1 |
x | 17/2(loại) | 3 | -9 | -7/2(loại) |
y | 2 | 2 |
Vậy (x;y) = (3;2) ; (-9;2)
Lời giải:
a)
$(x-z)^2+(y-z)^2+y^2+z^2=2xy-2yz+6z-9$
$\Leftrightarrow x^2-2xz+z^2+(y-z)^2+y^2+z^2-2xy+2yz-6z+9=0$
$\Leftrightarrow x^2-2x(z+y)+(z^2+y^2+2yz)+(y-z)^2+(z^2-6z+9)=0$
$\Leftrightarrow x^2-2x(y+z)+(y+z)^2+(y-z)^2+(z-3)^2=0$
$\Leftrightarrow (x-y-z)^2+(y-z)^2+(z-3)^2=0$
Vì $(x-y-z)^2\geq 0; (y-z)^2\geq 0; (z-3)^2\geq 0$ với mọi $x,y,z\in\mathbb{R}$ nên để tổng của chúng bằng $0$ thì:
$(x-y-z)^2=(y-z)^2=(z-3)^2=0$
$\Rightarrow z=3; y=3; x=6$
b)
$x^2+3y^2+z^2+2xy-2yz-2x+4y+10=0$
$\Leftrightarrow (x^2+2xy+y^2)+(y^2-2yz+z^2)+y^2-2x+4y+10=0$
$\Leftrightarrow (x+y)^2+(y-z)^2+y^2-2(x+y)+6y+10=0$
$\Leftrightarrow (x+y)^2-2(x+y)+1+(y-z)^2+(y^2+6y+9)=0$
$\Leftrightarrow (x+y-1)^2+(y-z)^2+(y+3)^2=0$ (lập luận tương tự phần a)
$\Leftrightarrow y=z=-3; x=4$
\(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)
Vì \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+5\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)\(\Rightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y+z\right)^2=0\\\left(x+5\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x+5=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y+z=0\\x=-5\\y=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-5\\y=-3\\z=8\end{cases}}}\)
<=>(x2+y2+z2+2xy+2yz+2xz)+(x2+2x+1)+(y2+4y+4)=0
<=>(x+y+z)2+(x+1)2+(y+2)2=0
Mà \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}\Rightarrow\left(x+y+z\right)^2+\left(x+1\right)^2+\left(y+2\right)^2\ge0}\)
=>\(\hept{\begin{cases}x+y+z=0\\x+1=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}z=3\\x=-1\\y=-2\end{cases}}}\)
2x2 + 2y2 + z2 + 2xy + 2xz + 2yz + 2x + 4y + 5 = 0
<=> (x2 + y2 + z2 + 2xy + 2yz + 2xz) + (x2 + 2x + 1) + (y2 + 4y + 4) = 0
<=> (x + y + z)2 + (x + 1)2 + (y + 2)2 = 0
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=0\\x+1=0\\y+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\\z=3\end{matrix}\right.\)
g. G(x)=2x²+2y2+z²+2xy-2xz-2yz-2x-4y
= [x2+2x(y-z)+(y2-2yz+z2)]+(x2-2x+1)+(y2-4y+4)-5
= (x+y-z)2+(x-1)2+(y-2)2-5
Vì (x+y-z)2≥0∀x,y,z
(x-1)2≥0∀x
(y-2)2≥0∀y
⇒ G = (x+y-z)2+(x-1)2+(y-2)2-5 ≥ -5
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+y-z=0\\x-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z=3\\x=1\\y=2\end{matrix}\right.\)
h,H(x)=x² + y²-xy-x+y+1
⇔ 2H=2x2+2y2-2xy-2x-2y+2
= (x2-2xy+y2)+(x2-2x+1)+(y2-2y+1)
= (x-y)2+(x-1)2+(y-1)2
Vì (x-y)2≥0 ∀x,y
(x-1)2≥0 ∀x
(y-1)2 ≥0 ∀y
⇒ 2H≥0 ⇒ H≥0
Dấu "=" xảy ra ⇔ x=y=1
\(2x^2+2y^2+z^2+2xy+2yz+2zx+2x+4y+5\)
\(=\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+2x+1\right)+\left(y^2+4y+4\right)\)
\(=\left(x+y+z\right)^2+\left(x+1\right)^2+\left(y+2\right)^2=0\)
Mà: \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}\left(x+y+z\right)^2=0\\\left(x+1\right)^2=0\\\left(y+2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x+1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x=-1\\y=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}z=3\\x=-1\\y=-2\end{cases}}\)
x^2+2xy+y^2+y^2-2yz+z^2+y^2+4y+4+6-2x=0
(x+y)^2+(y-z)^2+(y+2)^2+2*(3-x)=0
y+2=0=>y=-2
y-z=0=>z=-2
x+y=0=>x=2
<=>(x2+2xy+y2)+(y2-2yz+z2)+(y2+6y+9)-(2x+2y)+1=0
<=>[(x+y)2-2(x+y)+1]+(y-z)2+(y+3)2=0
<=>(x+y-1)2+(y-z)2+(y+3)2=0
Vì \(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}\Rightarrow\left(x+y-1\right)^2+\left(y-z\right)^2+\left(y+3\right)^2\ge0}\)
\(\Rightarrow\hept{\begin{cases}x+y-1=0\\y-z=0\\y+3=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=1\\y-z=0\\y=-3\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\z=-3\\y=-3\end{cases}}}\)
Vậy x=4,y=z=-3