Tìm x thuộc Z để các biểu thức sau đạt GTNN C= 5 / ( x-2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)A=( x - 1 )2 + 2008
ta thấy:(x-1)2\(\ge\)0
=>(x-1)2+2008\(\ge\)0+2008
=>A\(\ge\)2008
vậy Amin=2008 khi x=1
b)B = | x + 4 | + 1996
=>|x+4|\(\ge\)0
=>|x+4|+1996\(\ge\)0+1996
=>B\(\ge\)1996
c)để C đạt GTNN=>5 chia hết x-2
=>x-2\(\in\){1,-1,5,-5}
=>x\(\in\){3,2,-3,7}
mà C đạt GTNN =>x=-3
d)để D đạt GTNN=>x+5 chia hết x-4
<=>(x-4)+9 chia hết x-4
=>9 chia hết x-4
=>x-4\(\in\){1,-1,3,-3,-9,9}
=>x\(\in\){5,3,7,1,13,-5}
mà D đạt GTNN
=>x=1
mà D đạt GTNN =>x=-3
A=(x-1)2+2008
\(\text{vì }\left(x-1\right)^2\ge0\) nên A đạt GTNN là 2008
<=> x-1=0
=> x=0+1
=> x=1
Ta có B=\(\left|x-2\right|+\left|x-4\right|+\left|x-3\right|=\left|x-2\right|+\left|4-x\right|+\left|x-3\right|\ge\left|x-2+4-x\right|+\left|x-3\right|=2+\left|x-3\right|\ge2\)
Dấu = xảy ra <=> x=3
c) Ta có C=\(\left|x-1\right|+\left|4-x\right|+\left|x-2\right|+\left|3-x\right|\ge\left|x-1+4-x\right|+\left|x-2+3-x\right|=4\)
Dấu = xảy ra <=> \(2\le x\le3\)
^_^
b) Ta có: \(\hept{\begin{cases}\left|x-2\right|\ge x-2\\\left|x-3\right|\ge0\\\left|x-4\right|=\left|4-x\right|\ge4-x\end{cases}}\)
\(\Rightarrow\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\ge\left(x-2\right)+\left(4-x\right)\)
\(\Rightarrow B\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2\ge0\\x-3=0\\4-x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge2\\x=3\\x\le4\end{cases}}\)
Vậy, MinP \(\Leftrightarrow\hept{\begin{cases}x\ge2\\x=3\\x\le4\end{cases}}\)
\(\left|x-5\right|+\left|x-7\right|\\ =\left|5-x\right|+\left|x-7\right|\\ \ge\left|5-x+x-7\right|\\ =\left|-2\right|\\ =2\)
Dấu "=" xảy ra \(\Leftrightarrow\left(5-x\right)\left(x-7\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}5-x\ge0\\x-7\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}5-x\le0\\x-7\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le5\\x\ge7\left(vô.lí\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge5\\x\le7\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow5\le x\le7\)
Vậy \(5\le x\le7\) thì \(\left|x-5\right|+\left|x-7\right|\) đạt GTNN
\(A=\left(x-1\right)^2+2016\)
Vì \(\left(x-1\right)^2\ge0\)
\(=>GTNN\left[\left(x-1\right)^2\right]=0\)
Vậy \(A_{min}=0+2016=2016\)
Để A đạt giá trị nhỏ nhất thì \(\left(x-1\right)^2=0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
\(B=Ix+10I+2016\)
Vì \(Ix+10I\ge0\)
Nên \(GTNN\left(Ix+10I\right)=0\)
Vậy \(B_{min}=0+2016=2016\)
Để B đạt giá trị nhỏ nhất thì \(Ix+10I=0\)
\(x+10=0\Rightarrow x=-10\)
\(C=\frac{5}{x-2}\)
Khi \(x-2\) càng lớn thì \(C=\frac{5}{x-2}\)càng nhỏ
Mà để C là số nguyên thì \(\left(x-2\right)\in\left\{-5;5\right\}\)
Mà \(\left(-5\right)< 5\)
=> \(GTNN\left(x-2\right)=-5\)
\(\Rightarrow x=\left(-5\right)+2=-3\)
\(B=\frac{1}{2\left(x-1\right)^2}+3\)[ĐKXĐ:2(x-1)^2>0]
Để B đạt GTLN thì 2(x-1)^2 đạt GTNN
\(Tacó:2\left(x-1\right)^2\ge0\)do đk nên \(2\left(x-1\right)^2\ge1\)
Đẳng thức xảy ra :\(< =>\left(x-1\right)^2=\frac{1}{2}< =>x^2-x+\frac{1}{2}=0\)
Do PT trên vô nghiệm nên B không thể có GTLN
I đồng knơ
Mk nuốn tham khảo