K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mik chắc P=5 lun bạn ạ  

Học Tốt Nha Bạn ^_^

2 tháng 11 2016

dài thế

2 tháng 11 2016

1.593;599

2.p=3

3.là số nguyên tố

5.

14 tháng 8 2018

1. Để P là số nguyên tố thì một trong 2 thừa số ( n - 2 ) hoặc ( n2 + n - 5 ) một số là số nguyên tố và một số là 1 

Vì nếu  không có một số bằng 1 thì P là hợp số 

TH1 : Nếu ( n - 2 ) = 1 thì n = 3

=> P = ( 3 - 2 ) . ( 32 + 3 - 5 ) = 1. ( 9 + ( -2 )= 1 .7 = 7 thoã mãn đề bài

TH2 : Nếu ( n2 + n - 5 ) = 1 thì n = 2

=> P = ( 2 - 2 ) . ( 22 + n - 5 ) = 0 .( 22 + n - 5 ) = 0 không thoã mãn đề bài 

Vậy n = 3

2. Số số hạng của dãy số đó là : ( n - 1 ) : 1 + 1 = n

Tổng của dãy số đó là :

( n +1 ) . n : 2 = 20301 

=> ( n + 1 ) . n = 40602

mà 202 . 201 = 40602

Vậy n = 201

                                                                         Nhớ tk cho mình nhé ! OK

14 tháng 8 2018

OK.cảm ơn

Đặt 7p + 1 = n^3 (n > 2)

=> 7p = (n - 1)(n^2 + n + 1)

Ta có 2 TH :

TH1 : n -  1  = 7 \(\forall\)n^2 + n +1 = p => n = 8 => p = 73

TH2 : n - 1 = p \(\forall\) n^2 + n + 1 =7 => ....

30 tháng 7 2023

Lời giải:

Đặt 7�+1=�3 với  là số tự nhiên.

⇔7�=�3−1=(�−1)(�2+�+1)

Đến đây có các TH: 

TH1: �−1=7;�2+�+1=�

⇒�=8;�=73 (tm) 

TH2: �−1=�,�2+�+1=7

⇒�=2 hoặc �=−3

⇒�=1 hoặc �=−4 (không thỏa mãn) 

TH3: �−1=7�;�2+�+1=1 (dễ loại) 

TH4: �−1=1; �2+�+1=7� (cũng dễ loại)

19 tháng 10 2016

a,p=2.

b,p=0,2,4.

c,ban tự lm

k mik nhe

21 tháng 3 2018

Vì 4 số nguyên tố có tổng là lẻ

=> Sẽ có một số là số chẵn

=> Số chẵn trong các số đó là 2

=> 3 số nguyên tố còn lại là: 3;5;7

\(\Leftrightarrow2^x\cdot\dfrac{1}{8}+2^x\cdot\dfrac{1}{4}+2^x\cdot\dfrac{1}{2}=254\)

\(\Leftrightarrow2^x\cdot\dfrac{7}{8}=254\)

\(\Leftrightarrow2^x=\dfrac{2032}{7}\)

mà x là số tự nhiên

nên \(x\in\varnothing\)

12 tháng 5 2017

- Xét p=2 => p+4 =6 ( không là số nguyên tố )=> loại

- xét p=3 => p+4 =7 (t,m) và p+8 =11 ( t.m)

Nếu p>3 , p nguyên tố => p  có dạng 3k+1 hoặc 3k+2 (k nguyen dương)

- p=3k+1 => p+8 = 3k+1+8 =3k+9 chia hết cho 3 => loại

- p=3k+2 => p+4 = 3k+2+4 = 3k+6 chia hết cho 3 => loại

=>  với mọi p>3 đều không thỏa mãn 

Vậy  p=3 là giá trị thỏa mãn cần tìm 

12 tháng 5 2017

Số nguyên p là 3

22 tháng 11 2017

Chào bạn!

Ta sẽ chứng minh bài toán này theo phương pháp phản chứng

Giả sử \(\left(a;c\right)=m\)\(V\text{ới}\)\(m\in N\)\(m\ne1\)

Khi đó \(\hept{\begin{cases}a=k_1m\\c=k_2m\end{cases}}\)

Thay vào \(ab+cd=p\)ta có : \(k_1mb+k_2md=p\Leftrightarrow m\left(k_1b+k_2d\right)=p\)

Khi đó p là hợp số ( Mâu thuẫn với đề bài)

Vậy \(\left(a;c\right)=1\)(đpcm)

7 tháng 11 2021

khó quá

mình cũng đang hỏi câu đấy đây