\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
Giúp với mình cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK : 51x \(\ge0\Rightarrow x\ge0\)
Với \(x\ge0\)thì \(x+\frac{1}{1.3}>0;x+\frac{1}{3.5}>0;...;x+\frac{1}{99.101}>0\)
Khi đó : \(\left|x+\frac{1}{1.3}\right|+\left|x+\frac{1}{3.5}\right|+\left|x+\frac{1}{5.7}\right|+...+\left|x+\frac{1}{99.101}\right|=51x\)
<=> \(x+\frac{1}{1.3}+x+\frac{1}{3.5}+x+\frac{1}{5.7}+....+x+\frac{1}{99.101}=51x\)(50 hạng tử x ở VT)
<=> \(50x+\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}=51x\)
<=> \(x=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{1}{99.101}\right)\)
<=> \(x=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
<=> \(x=\frac{1}{2}\left(1-\frac{1}{101}\right)=\frac{50}{101}\)
Vậy x = 50/101
=1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101
=1-1/101
=100/101
k cho mình nha
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{101}\right)=\frac{1}{2}.\frac{100}{101}=\frac{50}{101}\)
\(S1=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\)
\(S1=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{101}=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)
\(S2=\frac{5}{1.3}+\frac{5}{3.5}+....+\frac{5}{99.101}\)
\(S2=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-.....-\frac{1}{101}\right)=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{5}{2}\cdot\frac{100}{101}=\frac{250}{101}\)
A=1 - 1/3+1/3 - 1/5+1/5 - 1/6+...+1/99 - 101+1/101 - 1/103
A=1 - 1/103
A=102/103
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}+\frac{1}{101.103}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{101.103}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{101}-\frac{1}{103}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{103}\right)\)
\(=\frac{1}{2}.\frac{102}{103}\)
\(=\frac{51}{103}\)
\(\text{Đ}\text{ặt}:A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+..+\frac{1}{99.101}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(2A=1-\frac{1}{101}\)
\(A=\frac{100}{101}:2=\frac{50}{101}\)
\(\Rightarrow\frac{1}{3}x.x=\frac{50}{101}\)
\(x.\left(\frac{1}{3}.1\right)=\frac{50}{101}\)
\(x.\frac{1}{3}=\frac{50}{101}\)
$x=\frac{50}{101}:\frac{1}{3}=\frac{150}{101}$
\(.\frac{1}{3}x.x=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(\frac{1}{3}xx=\frac{1}{2}.\left(1-\frac{1}{101}\right)\)
\(\frac{1}{3}xx=\frac{1}{2}.\left(\frac{100}{101}\right)\)
\(\frac{1}{3}xx=\frac{50}{101}\)
\(x.x=\frac{150}{101}\)
còn lại tự tính
\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(S=\frac{2}{2}.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)
\(S=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(S=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(S=\frac{1}{2}.\left(1-\frac{1}{101}\right)\)
\(S=\frac{1}{2}.\frac{100}{101}=\frac{50}{101}\)
nhân S cho 2
Công thức \(\frac{2}{x.\left(x+2\right)}=\frac{1}{x}-\frac{1}{x+2}\)
a, \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)
=2.(\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\))
=\(2.\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
=\(\frac{2}{2}.\left(1-\frac{1}{101}\right)\)
\(=\frac{100}{101}\)
b, \(\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)
=\(5.\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)\)
=\(5.\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)
=\(\frac{250}{101}\)
\(=\frac{5}{2}.\frac{100}{101}\)
a,21.321.3+23.523.5+25.725.7+....+299.101
=>\(\frac{1}{1}-\frac{1}{3}+\frac{1}{5}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{101}\)
=>\(\frac{1}{1}-\frac{1}{101}\)
=>\(\frac{100}{101}\)
b,
51.351.3+53.553.5+55.755.7+....+599.101
=>\(\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+....+\frac{2}{99.101}\right)\)
=>\(\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{101}\right)\)
=>\(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{101}\right)\)
=>\(\frac{5}{2}.\frac{100}{101}\)
=>\(\frac{250}{101}\)
\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(2S=1-\frac{1}{101}\Rightarrow2S+\frac{1}{101}=1\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
\(\frac{1}{1.3}+\frac{1}{3,5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)
\(=\frac{1}{2}.\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+...+\frac{101-99}{99.101}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\frac{100}{101}\)
\(=\frac{50}{101}\)
-.-