K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2017

Đặt : ƯCLN(2n+5,2n+4)=d

Ta có: (2n+5)\(⋮\)d và (2n+4) \(⋮\)d

\(\Rightarrow\)(2n+5) - (2n+4)\(⋮\)d

\(\Leftrightarrow\)2n+5 - 2n-4 \(⋮\)d

\(\Leftrightarrow\)5 - 4 \(⋮\)d

\(\Leftrightarrow\)1\(⋮\)d

\(\Leftrightarrow\)d = 1

Vậy: ƯCLN (2n+5,2n+4) = 1(đpcm)

kb vs mk nha

28 tháng 3 2019

Mk k bt lm

NV
3 tháng 1 2024

a,

Gọi \(d=ƯC\left(n+1;2n+3\right)\) với \(d\in N\)

\(\Rightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow2n+3-2\left(n+1\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow n+1\) và \(2n+3\) nguyên tố cùng nhau với mọi \(n\in N\)

Các câu sau em biến đổi tương tự

10 tháng 11 2017

a)Gọi ƯCLN(2n+1,2n+3) = d     (d thuộc N*)

=>2n+1 chia hết cho d và 2n+3 chia hết cho d

=>(2n+3)-(2n+1) chia hết cho d

=>2 chia hết cho d

=>d thuộc Ư(2)

Ta có: Ư(2)={1;2}

Vì 2n+1 và 2n+3 là số lẻ nên d không thể bằng 2

=>d=1

Vậy ƯCLN(2n+1,2n+3) = 1             (đpcm)

b)Gọi ƯCLN(2n+5,3n+7) = d         (d thuộc N*)

=>2n+5 chia hết cho d và 3n+7 chia hết cho d

=>6n+15 chia hết cho d và 6n+14 chia hết cho d 

=>(6n+15)-(6n+14) chia hết cho d

=>1 chia hết cho d

=>d thuộc Ư(1) =>d=1

Vậy ƯCLN(2n+5,3n+7) = 1             (đpcm)

14 tháng 11 2017

a) Đặt: ƯCLN(2n+1,2n+3) = d

Ta có: 2n+1 \(⋮\)d và 2n+3 \(⋮\)d

\(\Rightarrow\)(2n+3) - (2n+1) \(⋮\)d

\(\Leftrightarrow\)2n+3 - 2n-1 \(⋮\)d

\(\Leftrightarrow\)2\(⋮\)d

Vì 2n+3 ko chia hết cho 2

Nên 1\(⋮\)d

\(\Leftrightarrow\)d=1

Vậy ƯCLN( 2n+1,2n+3) = 1(đpcm)

b) Đặt ƯCLN( 2n+5,3n+7 ) = d

Ta có: 2n+5 \(⋮\)\(\Leftrightarrow\)3(2n+5) \(⋮\)d

                             \(\Leftrightarrow\)6n+15 \(⋮\)d

            3n+7\(⋮\)\(\Leftrightarrow\)2(3n+7) \(⋮\)d

                             \(\Leftrightarrow\)6n+14 \(⋮\)d

\(\Rightarrow\)(6n+15) - (6n+14)\(⋮\)d

\(\Leftrightarrow\)6n+15 - 6n - 14\(⋮\)d

\(\Leftrightarrow\)1\(⋮\)d

\(\Leftrightarrow\)d = 1

Vậy ƯCLN(2n+5,3n+7) = 1(đpcm)

Kb vs mk nha

20 tháng 7 2016

\(\frac{2n+3}{2n+5}=\frac{2n+2+1}{2n+2+3}=\frac{2\left(n+1\right)+1}{2\left(n+1\right)+3}\)Ta thấy phân số trên có tử và mẫu là 2 số lẽ liên tiếp nên là phân số tối giản.