K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2015

Vì a>2=>a=2+m, b>2=>b=2+n (m,n thuộc N*)

=>a.b=(2+m).(2+n)=2.(2+n)+m.(2+n)=4+2n+2m+mn=4+m+m+n+n+mn=(4+m+n)+(m+n+mn)=(2+m)+(2+n)+(m+n+mn)>(2+m)+(2+m)=a.b

=>ĐPCM

19 tháng 7 2018

Vì a>2=>a=2+m, b>2=>b=2+n (m,n thuộc N*)

=>a.b=(2+m).(2+n)=2.(2+n)+m.(2+n)=4+2n+2m+mn=4+m+m+n+n+mn=(4+m+n)+(m+n+mn)=(2+m)+(2+n)+(m+n+mn)>(2+m)+(2+m)=a.b

=>ĐPCM

19 tháng 7 2018

Vì \(a>2\)

và \(b>2\)

\(\Rightarrow a>0\)và \(b>0\)

Vì \(a>2\)và \(b>0\)

\(\Rightarrow ab>2b\)(1)

Vì \(b>2\)và \(a>0\)

\(\Rightarrow ab>2a\) (2)

Cộng vế tương ứng (1) và (2) ta có :

\(2ab>2\left(a+b\right)\)

\(\Rightarrow ab>a+b\)(đpcm)

17 tháng 10 2017

\(\left\{{}\begin{matrix}a>b\\b>2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a>2\\b>2\end{matrix}\right.\)

Nên \(\left\{{}\begin{matrix}a=2+m\\b=2+n\end{matrix}\right.\)

Khi đó:

\(\left\{{}\begin{matrix}ab=\left(2+m\right)\left(2+n\right)\\a+b=2+m+2+n\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}ab=4+2n+2m+mn\\a+b=4+m+n\end{matrix}\right.\)

Dễ thấy: \(4+2\left(m+n\right)+mn>4+m+n\)

Nên ta có đpcm

14 tháng 8 2015

Xét a<b=>a+b<b+b=2b

Vì a>2=>ab>2b>a+b

=>a+b<ab

Xét b<a=>a+b<a+a=2a

Vì b>2=>ab>2a>a+b

=>a+b<ab

Vậy a+b<ab

14 tháng 8 2015

Giả sử a<b.

=>a+b<b+b=2b

Vì a>2=>ab>2b>a+b

=>a+b<ab

Giả sử b<a.

=>a+b<a+a=2a

Vì b>2=>ab>2a>a+b

=>a+b<ab

Vậy a+b<ab

29 tháng 12 2015

a>2 => a lớn hơn hoặc bằng 3
b>2 => b lớn hơn hoặc 3
= > a+ b lớn hơn hoặc bằng 6
=> a.b lớn hơn hoặc bằng 9
=> a+b nhỏ hơn a.b

8 tháng 9 2016

Ta có a> 2 và b>2 nên a(b-2)>0 và b(a-2) >0.
Vậy a(b-2)+b(a-2) >0 <=> 2[ab -a -b] >0 <=> ab > a+ b.

8 tháng 9 2016

Ta có a> 2 và b>2 nên a(b-2)>0 và b(a-2) >0.
Vậy a(b-2)+b(a-2) >0 <=> 2[ab -a -b] >0 <=> ab > a+ b.