định a,b để phương trình:
\(a\left(x-1\right)+b\left(2x+1\right)=x+2\) có vô số nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)
\(VP=-4x^2+12x-9-1=-\left(2x-3\right)^2-1\le-1\)
\(\Rightarrow VT>VP\) ; \(\forall x\)
\(\Rightarrow\) Pt đã cho luôn luôn vô nghiệm
b.
\(\Leftrightarrow\left(m^2+3m\right)x=-m^2+4m+21\)
\(\Leftrightarrow m\left(m+3\right)x=\left(7-m\right)\left(m+3\right)\)
Để pt có nghiệm duy nhất \(\Rightarrow m\left(m+3\right)\ne0\Rightarrow m\ne\left\{0;-3\right\}\)
Khi đó ta có: \(x=\dfrac{\left(7-m\right)\left(m+3\right)}{m\left(m+3\right)}=\dfrac{7-m}{m}\)
Để nghiệm pt dương
\(\Leftrightarrow\dfrac{7-m}{m}>0\Leftrightarrow0< m< 7\)
đây là hệ phương trình hay 2 phương trình khác nhau mà có dấu = lại ghi là các
a.
- Với \(m=-1\Rightarrow x=\dfrac{6}{7}\) (ktm)
- Với \(m\ne-1\)
\(\Delta=\left(8m+1\right)^2-24m\left(m+1\right)=40m^2-8m+1>0;\forall m\) \(\Rightarrow\) pt luôn có 2 nghiệm pb
Để pt có 2 nghiệm thỏa mãn: \(x_1< x_2\le1\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)\ge0\\\dfrac{x_1+x_2}{2}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_1\right)+1\ge0\\x_1+x_2< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6m}{m+1}-\dfrac{8m+1}{m+1}+1\ge0\\\dfrac{8m+1}{m+1}< 2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-m}{m+1}\ge0\\\dfrac{6m-1}{m+1}< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-1< m\le0\\-1< m< \dfrac{1}{6}\end{matrix}\right.\) \(\Rightarrow-1< m\le0\)
\(\Rightarrow\) Pt có nghiệm thuộc khoảng đã cho khi: \(\left[{}\begin{matrix}m>0\\m< -1\end{matrix}\right.\)
b.
Đặt \(f\left(x\right)=\left(m+1\right)x^2-\left(8m+1\right)x+6m\)
Pt đã cho có đúng 1 nghiệm thuộc (0;1) khi:
\(f\left(0\right).f\left(1\right)< 0\)
\(\Leftrightarrow6m\left(m+1-8m-1+6m\right)< 0\)
\(\Leftrightarrow-6m^2< 0\)
\(\Leftrightarrow m\ne0\)
anh ơi, vậy là sai đề hả anh, chứ đề kêu chứng minh phương trình vô nghiệm mà em thấy anh ghi x=2
Vào thống kê của "Wall Duong" để xem đồ thị
a)
b) Đỉnh I\(\left(\frac{3}{4};\frac{-1}{8}\right)\)trục đối xứng d: x=\(\frac{3}{4};a=2>0\)
Cho x=0 => y=1; y=1=> x=0,x=\(\frac{1}{2}\)
c) Ta có \(y=f\left(x\right)=2x^2-3\left|x\right|+1\)là hàm số chẵn, vì f(x)=f(-x) nên đồ thị đối xứng qua trục tung
Xét x>=0 thì y=2x2-3x+1 nên đồ thị y=f(x) lấy phần của prabol (P): y=2x2-3x+1 với x>=0 sau đó lấy phần đối xứng đó qua trục tung
Số nghiệm của phương trình 2x2-3|x|+1=m là số giao điểm của đồ thị y=f(x) với đường thẳng y=m
Phương trình vô nghiệm nếu m<\(-\frac{1}{8}\), có 2 nghiệm nếu \(\orbr{\begin{cases}m=\frac{-1}{8}\\m=1\end{cases}}\), có 3 nghiệm nếu m=1, có 4 nghiệm nếu \(-\frac{1}{8}< m< 1\)
a: \(\Leftrightarrow\left(2m+1\right)^2-4\left(m^2-3\right)=0\)
\(\Leftrightarrow4m^2+4m+1-4m^2+12=0\)
=>4m=-13
hay m=-13/4
c: \(\Leftrightarrow\left(2m-2\right)^2-4m^2>=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2>=0\)
=>-8m>=-4
hay m<=1/2