tìm GTNN của biểu thức: A=(2x+1/2)^4-1,
tìm GTLN:B-(4/9x-2/15)^6+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)
Ta có: (1/2x - 5)20 \(\ge\)0 \(\forall\)x
(y2 - 1/4)10 \(\ge\)0 \(\forall\)y
=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)0 \(\forall\)x;y
Theo (1) => ko có giá trị x;y t/m
Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)0 \(\forall\)x
=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x
=> A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6
Vậy Min A = -1 tại x = -1/6
b) Ta có: -(4/9x - 2/5)6 \(\le\)0 \(\forall\)x
=> -(4/9x - 2/15)6 + 3 \(\le\)3 \(\forall\)x
=> B \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10
vậy Max B = 3 tại x = 3/10
Nhận xét : Lũy thừa bậc chẵn hay giá trị tuyệt đối của 1 số hữu tỉ luôn lớn hơn hoặc bằng 0(bằng 0 khi số hữu tỉ đó là 0)
1)\(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{3}\right)^4-10\ge-10\).Vậy GTNN của A là -10 khi :
\(\left(2x+\frac{1}{3}\right)^4=0\Rightarrow2x+\frac{1}{3}=0\Rightarrow2x=\frac{-1}{3}\Rightarrow x=\frac{-1}{6}\)
\(|2x-\frac{2}{3}|\ge0;\left(y+\frac{1}{4}\right)^4\ge0\Rightarrow|2x-\frac{2}{3}|+\left(y+\frac{1}{4}\right)^4-1\ge-1\).Vậy GTNN của B là -1 khi :
\(\hept{\begin{cases}|2x-\frac{2}{3}|=0\Rightarrow2x-\frac{2}{3}=0\Rightarrow2x=\frac{2}{3}\Rightarrow x=\frac{1}{3}\\\left(y+\frac{1}{4}\right)^4=0\Rightarrow y+\frac{1}{4}=0\Rightarrow y=\frac{-1}{4}\end{cases}}\)
2)\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6\ge0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)^6\le0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)+3\le3\).Vậy GTLN của C là 3 khi :
\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6=0\Rightarrow\frac{3}{7}x-\frac{4}{15}=0\Rightarrow\frac{3}{7}x=\frac{4}{15}\Rightarrow x=\frac{4}{15}:\frac{3}{7}=\frac{28}{45}\)
\(|x-3|\ge0;|2y+1|\ge0\Rightarrow-|x-3|\le0;-|2y+1|\le0\Rightarrow-|x-3|-|2y+1|+15\le15\)
Vậy GTLN của D là 15 khi :\(\hept{\begin{cases}|x-3|=0\Rightarrow x-3=0\Rightarrow x=3\\|2y+1|=0\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=\frac{-1}{2}\end{cases}}\)
Trả lời:
1, \(P=9x^2-7x+2=9\left(x^2-\frac{7}{9}x+\frac{2}{9}\right)=9\left[\left(x^2-2x\frac{7}{18}+\frac{49}{324}\right)+\frac{23}{324}\right]\)
\(=9\left[\left(x-\frac{7}{18}\right)^2+\frac{23}{324}\right]=9\left(x-\frac{7}{18}\right)^2+\frac{23}{36}\)
Ta có: \(9\left(x-\frac{7}{18}\right)^2\ge0\forall x\)
\(\Leftrightarrow9\left(x-\frac{7}{18}\right)^2+\frac{23}{26}\ge\frac{23}{26}\forall x\)
Dấu "=" xảy ra khi \(x-\frac{7}{18}=0\Leftrightarrow x=\frac{7}{18}\)
Vậy GTNN của P = 23/36 khi x = 7/18
a) Ta có: \(\left(2x+\frac{1}{3}\right)^4\ge0\)
\(\Rightarrow A=\left(2x+\frac{1}{3}\right)^4-1\ge-1\)
Vậy \(MIN_A=-1\) khi \(x=\frac{-1}{6}\)
b) Ta có: \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le0\) ( do \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\) )
\(\Rightarrow B=-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\le3\)
Vậy \(MAX_B=3\) khi \(x=\frac{3}{10}\)
a, Vì (2x+1/2)4>= 0
=> (2x+1/2)4-1>= -1
=> Min A =-1 <=> x = -1/4
b, vì -(4/9x-2/15)6<= 0
=> 3-(4/9x-2/15)6<= 3
=> Max B = 3 <=> x=3/10