tìm GTLN của Y=\(\frac{\sqrt{x}-2}{\sqrt{x}+2}\)
ĐKXĐ:x>0,x khác 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng bunhiacopski ta có:
P^2 =< (1+1+1)(1/1+x^2 + 1/1+y^2+1/1+z^2)= 3(....)
đặt (...) =A
ta có: 1/1+x^2=< 1/2x
tt với 2 cái kia
=> A=< 1/2(1/x+1/y+1/z) =<1/2 ( xy+yz+xz / xyz)=1/2 ..........
đoạn sau chj chịu
^^ sorry
Bài này là câu lớp 8 rất quen thuộc rùiiiiiii !!!!!!!!
gt <=> \(\frac{x+y+z}{xyz}=1\)
<=> \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)
Đặt: \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)
=> \(ab+bc+ca=1\)
VÀ: \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\)
THAY VÀO P TA ĐƯỢC:
\(P=\frac{1}{\sqrt{1+\frac{1}{a^2}}}+\frac{1}{\sqrt{1+\frac{1}{b^2}}}+\frac{1}{\sqrt{1+\frac{1}{c^2}}}\)
=> \(P=\frac{1}{\sqrt{\frac{a^2+1}{a^2}}}+\frac{1}{\sqrt{\frac{b^2+1}{b^2}}}+\frac{1}{\sqrt{\frac{c^2+1}{c^2}}}\)
=> \(P=\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\)
Thay \(1=ab+bc+ca\) vào P ta sẽ được:
=> \(P=\frac{a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+ab+bc+ca}}+\frac{c}{\sqrt{c^2+ab+bc+ca}}\)
=> \(P=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+a\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)
=> \(2P=2.\sqrt{\frac{a}{a+b}}.\sqrt{\frac{a}{a+c}}+2.\sqrt{\frac{b}{b+a}}.\sqrt{\frac{b}{b+c}}+2.\sqrt{\frac{c}{c+a}}.\sqrt{\frac{c}{c+b}}\)
TA ÁP DỤNG BĐT CAUCHY 2 SỐ SẼ ĐƯỢC:
=> \(2P\le\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{b+a}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{c}{c+b}\)
=> \(2P\le\left(\frac{a}{a+b}+\frac{b}{b+a}\right)+\left(\frac{b}{b+c}+\frac{c}{c+b}\right)+\left(\frac{c}{c+a}+\frac{a}{a+c}\right)\)
=> \(2P\le\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\)
=> \(2P\le1+1+1=3\)
=> \(P\le\frac{3}{2}\)
DẤU "=" XẢY RA <=> \(a=b=c\) . MÀ \(ab+bc+ca=1\)
=> \(a=b=c=\sqrt{\frac{1}{3}}\)
=> \(x=y=z=\sqrt{3}\)
VẬY P MAX \(=\frac{3}{2}\) <=> \(x=y=z=\sqrt{3}\)
\(=\frac{x+2}{\left(\sqrt{x}\right)^3-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\)
\(=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
\(A=\frac{\sqrt{xy}}{z+2\sqrt{xy}}+\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{zx}}{y+2\sqrt{zx}}\)
\(2A=\frac{z+2\sqrt{xy}}{z+2\sqrt{xy}}-\frac{z}{z+2\sqrt{xy}}+\frac{x+2\sqrt{yz}}{x+2\sqrt{yz}}-\frac{x}{x+2\sqrt{yz}}+\frac{y+2\sqrt{zx}}{y+2\sqrt{zx}}-\frac{y}{y+2\sqrt{zx}}\)
\(=3-\left(\frac{x}{x+2\sqrt{yz}}+\frac{y}{y+2\sqrt{zx}}+\frac{z}{z+2\sqrt{xy}}\right)\le3-\left(\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\right)\)
\(=3-\frac{x+y+z}{x+y+z}=3-1=2\)\(\Leftrightarrow\)\(A\le\frac{2}{2}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)
...
\(A=\frac{1}{\sqrt{x^2-xy+y^2}}+\frac{1}{\sqrt{y^2-yz+z^2}}+\frac{1}{\sqrt{z^2-zx+x^2}}\)
\(=\frac{1}{\sqrt{\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x^2+y^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(y-z\right)^2+\frac{1}{2}\left(y^2+z^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(z-x\right)^2+\frac{1}{2}\left(z^2+x^2\right)}}\)
\(\le\frac{1}{\sqrt{\frac{1}{2}\left(x^2+y^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(y^2+z^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(z^2+x^2\right)}}\)
\(\le\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
a) đk: \(x\ge0;x\ne1\)
b) \(A=\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right)\div\frac{\sqrt{x}-1}{2}\)
\(A=\frac{x+2+\left(\sqrt{x}-1\right)\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\div\frac{\sqrt{x}-1}{2}\)
\(A=\frac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\frac{2}{\sqrt{x}-1}\)
\(A=\frac{2\left(x-2\sqrt{x}+1\right)}{\left(x-2\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}\)
\(A=\frac{2}{x+\sqrt{x}+1}\)
c) Ta có: \(x+\sqrt{x}+1=\left(x+\sqrt{x}+\frac{1}{4}\right)+\frac{3}{4}=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
=> \(\frac{2}{x+\sqrt{x}+1}>0\left(\forall x\ne1\right)\)
d) Ta chỉ có thể tìm GTLN thôi
Để A đạt GTLN => \(x+\sqrt{x}+1\) phải đạt GTNN
Dấu "=" xảy ra khi: \(x=0\)
Vậy Max(A) = 2 khi x = 0
ĐKXĐ : \(x\ge0\)
Có : \(Y=\frac{\sqrt{x}-2}{\sqrt{x}+2}=\frac{\sqrt{x}+2-4}{\sqrt{x}+2}=1-\frac{4}{\sqrt{x}+2}\le1-\frac{4}{2}=-1\)
Dấu "=" xảy ra khi x=0
Vậy \(Y_{max}=-1\Leftrightarrow x=0\)
\(\frac{\sqrt{x}-2}{\sqrt{x}+2}=1-\frac{4}{\sqrt{x}+2}\)
Vì x>=0\(\Rightarrow\)\(\sqrt{x}+2>=2\)\(\Rightarrow\)\(\frac{1}{\sqrt{x}+2}< =\frac{1}{2}\)\(\Rightarrow\frac{4}{\sqrt{x}+2}< =2\)\(\Rightarrow1-\frac{4}{\sqrt{x}+2}>=-1\)
\(\Rightarrow\frac{\sqrt{x}-2}{\sqrt{x}+2}>=-1\)
Dấu '=' xảy ra \(\Leftrightarrow\)\(\sqrt{x}+2=2\)\(\Leftrightarrow x=0\)