Chứng tỏ rằng 6n + 4 và 8n + 5 là 2 số nguyên tố cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN của 6n+4 và 8n+5 là d ( d thuộc N sao )
=> 6n+4 và 8n+5 đều chia hết cho d
=> 4.(6n+4) và 3.(8n+5) đều chia hết cho d
=> 24n+16 và 24n+15 chia hết cho d
=> 24n+16-(24n+15) chia hết cho d hay 1 chia hết cho d
=> d = 1 ( vì d thuộc N sao )
=> ƯCLN của 6n+4 và 8n+5 là 1
=> 6n+4 và 8n+5 là 2 số nguyên tố cùng nhau
=> ĐPCM
k mk nha
Phai chung minh 6n+4va8n+5 co uoc chung la. 1
(6n+4;8n+5)=(6n+4;2n+1)=(4n+3;2n+1)=(2n+2;2n+1)=1
Vay 6n+4 va 8n+5 la hai so nguyen to cung nhau
-Gọi d là ƯCLN (8n + 7, 6n + 5 )
\(8n+7⋮d\Rightarrow3\left(8n+7\right)⋮d\Rightarrow24n+21⋮d\)
\(6n+5⋮d\Rightarrow4\left(6n+5\right)⋮d\Rightarrow24n+20⋮d\)
\(\left[\left(24n+21\right)-\left(24n+20\right)\right]⋮d\)
\(\left[24n+21-24n-20\right]⋮d\)
\(1⋮d\Rightarrow d=1\)
Vậy 8n + 7 và 6n + 5 là 2 số nguyên tố cùng nhau
PP/ss: Hoq chắc
Gọi ƯCLN(6n + 7 ; 8n + 9) = d
=> \(\hept{\begin{cases}6n+7⋮d\\8n+9⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4\left(6n+7\right)⋮d\\3\left(8n+9\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}24n+28⋮d\\24n+27⋮d\end{cases}}\)
=> \(\left(24n+28\right)-\left(24n+27\right)⋮d\)
=> \(1⋮d\)
=> d = 1
=> 6n + 7 và 8n + 9 là 2 số nguyên tố cùng nhau
Gọi ƯCLN( 2n+1; 6n+5) là d ( d thuộc n sao)
Ta có: 2n+1 chia hết d
6n+5 chia hết d
= 3.(2n+1) chia hết d
6n+5 chia hết d
=6n+3 chia hết d
6n+5 chia hết d
(6n+5)-(6n+3) chia hết d
=2 chia hết d
d=1;2
Mà 6n+5 không chia hết 2; suy ra d=1
Vậy 6n+5 và 2n+1 nguyên tố cùng nhau
kick hộ mình nhé
gọi d>0 là ước dung của 2n+1 và 6n+5
d là ước số 3(2n+1)=6n+3
(6n+5)_(6n+3)=2
suy ra d là ước của số lẻ :2n+1 suy ra d=1
vậy 2n+1 và 6n+5 là 2 nguyên tố cùng nhau
**** nhé Thanh Lộc thông minh
Gọi ước chung lớn nhất của 3n+6 và 6n+13 là a ( a thuộc N)
Ta có :
3n+6 chia hết cho a và 6n +13 chia hết cho a
nên 6n+12 chia hết cho a
nên 6n+13 - 6n-12 chia hết cho a hay 1chia hết cho a
nên a =1
Vậy ............................
Gọi \(ƯCLN\left(6n+4;8n+5\right)\)là \(d\left(d>0\right)\)
Theo bài ra ta có :
\(\hept{\begin{cases}6n+4⋮d\\8n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}4\left(6n+4\right)⋮d\\3\left(8n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}24n+16⋮d\\24n+15⋮d\end{cases}}}\)
\(\Rightarrow\left(24n+16\right)-\left(24n+15\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\) \(\left(6n+4;8n+5\right)\) là 1 :
\(\Rightarrowđpcm\)
Hai số nguyên tố cùng nhau là 2 số chỉ có một ước chung là 1
Gọi d là ước chung của 6n+4 và 8n+5
Ta có: 6n+4 chia hết cho d và 8n+5 chia hết cho d.
Suy ra: 4(6n+4) -3(8n+5) chia hết cho d
24n+16 -24n-15 chia hết cho d
1 chia hết cho d
Do đó: d=1
Vậy 6n+4 và 8n+5 là 2 số nguyên tố cùng nhau.
Mong bạn hiểu để lần sau làm được. Chúc bạn học tốt.