Cho tam giác vuông cân ABC. Kẻ AM vuông góc với BC. Gọi e là trung điểm của MC.Kẻ BH, CK vuông gcs với AE
Chứng minh tam giác HMK vuông cân
Mọi người trả lời giúp mình nha. Không cần vẽ hình đâu ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Ta có: ΔABC cân tại A
mà AE là đường trung tuyến
nên AE là đường cao
Xét ΔMHB vuông tại H và ΔMKC vuông tại K có
MB=MC
góc HMB=góc KMC
=>ΔMHB=ΔMKC
=>HB=CK
bạn tự vẽ hình nhé
a) Vì M là trung điểm BC nên AM là đường trung tuyến của tam giác ABC
Mà tam giác ABC cân nên AM là trung tuyến đồng thời đường cao => AM vuông góc BC
b) Tam giác ABC cân nên góc B = góc C
Xét tam giác BHM và tam giác CKM có:
góc BHM= góc CKM= 90 độ
góc B= góc C
BM=CM ( do M là trđiểm BC)
=> tam giác BHM = tam giác CKM (Cạnh huyền - góc nhọn)
=> BH=CK
c) tam giác BHM = tam giác CKM (cmt)=> góc BMH=góc CMK( hai góc tương ứng)
mà BP // MK( do cùng vuông góc với AC)=> góc IBM= góc KMC ( hai góc đồng vị)
=> góc IBM =góc IMB => tam giác IBM cân
Câu 1 (Bạn tự vẽ hình giùm)
a) Mình xin chỉnh lại đề một chút: \(\Delta ABD=\Delta ACD\)
\(\Delta ABD\)và \(\Delta ACD\)có: AB = AC (\(\Delta ABC\)cân tại A)
BD = DC (D là trung điểm của BC)
Cạnh AD chung
=> \(\Delta ABD=\Delta ACD\) (c. c. c) (đpcm)
b) Ta có \(\Delta ABD=\Delta ACD\)(cm câu a) => \(\widehat{BAD}=\widehat{DAC}\)(hai góc tương ứng) => AD là tia phân giác của \(\widehat{BAC}\)(đpcm)
c) Mình xin chỉnh lại đề một chút: AD \(\perp\)BC tại D
Ta có \(\Delta ABD=\Delta ACD\)(cm câu a) => \(\widehat{BDA}=\widehat{CDA}\)(hai góc tương ứng)
Mà \(\widehat{BDA}+\widehat{CDA}\)= 180o (kề bù)
=> \(\widehat{BDA}=\widehat{CDA}=\frac{180^o}{2}\)= 90o => AD \(\perp\)BC tại D (đpcm)