Tìm 2 số nguyên tố hết :
- Tổng của chúng = 931
- Hiệu của chúng = 507
Đăng làm quà nề .... Bsvv ♥
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do tổng của hai số nguyên tố là 931 là số lẻ, nên là tổng của một số nguyên tố lẻ và một số nguyên tố chẵn. Suy ra, số nguyên tố chẵn đó là 2. Vậy số nguyên tố còn lại cần tìm là: 931 – 2 = 929
2 và 5
vì 5-2=3(số nguyên tố)
5+2=7(số nguyên tố)
Tick đúng cho mình nha
Gọi 2 số nguyên tố đó là p, q và giả sử \(p>q\). Khi đó ta có \(p+q,p-q\) đều là các số nguyên tố.
Nếu \(p-q=2\) \(\Rightarrow p+q=2\) (vì \(\left(p-q\right)+\left(p+q\right)=2p⋮2\)), vô lí
Tương tự với TH \(p+q=2\) cũng sẽ dẫn tới điều vô lí.
Do đó \(p+q,p-q\) lẻ, mà p và q đều các số nguyên tố \(\Rightarrow q=2\)
Vậy, ta cần tìm p để \(p\pm2\) là các số nguyên tố \(\Rightarrow p\ge5\)
Xét \(p=5\) thì \(p+2=7;p-2=3\) thỏa mãn.
Xét \(p>5\) thì p có dạng \(p=6k+1,p=6k+5\left(k\ge1\right)\), khi đó dễ thấy rằng \(p+2,p-2\) là hợp số, vô lí.
Vậy \(p=5,q=2\) là cặp số nguyên tố duy nhất thỏa mãn đề bài.
5 + 2 = 7
5 - 2 = 3
Hai số đó là 2 và 5
1) +) Nếu cả hai số nguyên tố đều > 3 => 2 số đó lẻ => tổng và hiệu của chúng là số chẵn => Loại
=> Trong hai số đó có 1 số bằng 2. gọi số còn lại là a
+) Nếu a = 3 : ta có 3 + 2 = 5 ; 3 -2 = 1, 1 không là số nguyên tố => Loại
+) Nếu > 3 thì có thể có dạng: 3k + 1 ( k \(\in\)N*) hoặc 3k + 2 (k \(\in\) N*)
Khi a = 3k + 1 => a+ 2 = 3k + 3 = 3.(k + 1) là hợp số với k \(\in\) N* => Loại
Khi a = 3k + 2 => a + 2 = 3k + 4 ; a - 2 = 3k . 3k; 3k + 4 đều là số nguyên tố với k = 1 . Với k > 1 thì 3k là hợp số nên Loại
Vậy a = 3. 1+ 2 = 5
Vậy chỉ có 2 số 2;5 thỏa mãn